mirror of
https://github.com/gohugoio/hugo.git
synced 2024-12-25 06:21:37 +00:00
2168c5b125
Fixes #12763
784 lines
21 KiB
Go
784 lines
21 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package template
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net/url"
|
|
"reflect"
|
|
"strings"
|
|
"sync"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// FuncMap is the type of the map defining the mapping from names to functions.
|
|
// Each function must have either a single return value, or two return values of
|
|
// which the second has type error. In that case, if the second (error)
|
|
// return value evaluates to non-nil during execution, execution terminates and
|
|
// Execute returns that error.
|
|
//
|
|
// Errors returned by Execute wrap the underlying error; call [errors.As] to
|
|
// unwrap them.
|
|
//
|
|
// When template execution invokes a function with an argument list, that list
|
|
// must be assignable to the function's parameter types. Functions meant to
|
|
// apply to arguments of arbitrary type can use parameters of type interface{} or
|
|
// of type [reflect.Value]. Similarly, functions meant to return a result of arbitrary
|
|
// type can return interface{} or [reflect.Value].
|
|
type FuncMap map[string]any
|
|
|
|
// builtins returns the FuncMap.
|
|
// It is not a global variable so the linker can dead code eliminate
|
|
// more when this isn't called. See golang.org/issue/36021.
|
|
// TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
|
|
func builtins() FuncMap {
|
|
return FuncMap{
|
|
"and": and,
|
|
"call": emptyCall,
|
|
"html": HTMLEscaper,
|
|
"index": index,
|
|
"slice": slice,
|
|
"js": JSEscaper,
|
|
"len": length,
|
|
"not": not,
|
|
"or": or,
|
|
"print": fmt.Sprint,
|
|
"printf": fmt.Sprintf,
|
|
"println": fmt.Sprintln,
|
|
"urlquery": URLQueryEscaper,
|
|
|
|
// Comparisons
|
|
"eq": eq, // ==
|
|
"ge": ge, // >=
|
|
"gt": gt, // >
|
|
"le": le, // <=
|
|
"lt": lt, // <
|
|
"ne": ne, // !=
|
|
}
|
|
}
|
|
|
|
var builtinFuncsOnce struct {
|
|
sync.Once
|
|
v map[string]reflect.Value
|
|
}
|
|
|
|
// builtinFuncsOnce lazily computes & caches the builtinFuncs map.
|
|
// TODO: revert this back to a global map once golang.org/issue/2559 is fixed.
|
|
func builtinFuncs() map[string]reflect.Value {
|
|
builtinFuncsOnce.Do(func() {
|
|
builtinFuncsOnce.v = createValueFuncs(builtins())
|
|
})
|
|
return builtinFuncsOnce.v
|
|
}
|
|
|
|
// createValueFuncs turns a FuncMap into a map[string]reflect.Value
|
|
func createValueFuncs(funcMap FuncMap) map[string]reflect.Value {
|
|
m := make(map[string]reflect.Value)
|
|
addValueFuncs(m, funcMap)
|
|
return m
|
|
}
|
|
|
|
// addValueFuncs adds to values the functions in funcs, converting them to reflect.Values.
|
|
func addValueFuncs(out map[string]reflect.Value, in FuncMap) {
|
|
for name, fn := range in {
|
|
if !goodName(name) {
|
|
panic(fmt.Errorf("function name %q is not a valid identifier", name))
|
|
}
|
|
v := reflect.ValueOf(fn)
|
|
if v.Kind() != reflect.Func {
|
|
panic("value for " + name + " not a function")
|
|
}
|
|
if err := goodFunc(name, v.Type()); err != nil {
|
|
panic(err)
|
|
}
|
|
out[name] = v
|
|
}
|
|
}
|
|
|
|
// addFuncs adds to values the functions in funcs. It does no checking of the input -
|
|
// call addValueFuncs first.
|
|
func addFuncs(out, in FuncMap) {
|
|
for name, fn := range in {
|
|
out[name] = fn
|
|
}
|
|
}
|
|
|
|
// goodFunc reports whether the function or method has the right result signature.
|
|
func goodFunc(name string, typ reflect.Type) error {
|
|
// We allow functions with 1 result or 2 results where the second is an error.
|
|
switch numOut := typ.NumOut(); {
|
|
case numOut == 1:
|
|
return nil
|
|
case numOut == 2 && typ.Out(1) == errorType:
|
|
return nil
|
|
case numOut == 2:
|
|
return fmt.Errorf("invalid function signature for %s: second return value should be error; is %s", name, typ.Out(1))
|
|
default:
|
|
return fmt.Errorf("function %s has %d return values; should be 1 or 2", name, typ.NumOut())
|
|
}
|
|
}
|
|
|
|
// goodName reports whether the function name is a valid identifier.
|
|
func goodName(name string) bool {
|
|
if name == "" {
|
|
return false
|
|
}
|
|
for i, r := range name {
|
|
switch {
|
|
case r == '_':
|
|
case i == 0 && !unicode.IsLetter(r):
|
|
return false
|
|
case !unicode.IsLetter(r) && !unicode.IsDigit(r):
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// findFunction looks for a function in the template, and global map.
|
|
func findFunction(name string, tmpl *Template) (v reflect.Value, isBuiltin, ok bool) {
|
|
if tmpl != nil && tmpl.common != nil {
|
|
tmpl.muFuncs.RLock()
|
|
defer tmpl.muFuncs.RUnlock()
|
|
if fn := tmpl.execFuncs[name]; fn.IsValid() {
|
|
return fn, false, true
|
|
}
|
|
}
|
|
if fn := builtinFuncs()[name]; fn.IsValid() {
|
|
return fn, true, true
|
|
}
|
|
return reflect.Value{}, false, false
|
|
}
|
|
|
|
// prepareArg checks if value can be used as an argument of type argType, and
|
|
// converts an invalid value to appropriate zero if possible.
|
|
func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) {
|
|
if !value.IsValid() {
|
|
if !canBeNil(argType) {
|
|
return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType)
|
|
}
|
|
value = reflect.Zero(argType)
|
|
}
|
|
if value.Type().AssignableTo(argType) {
|
|
return value, nil
|
|
}
|
|
if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) {
|
|
value = value.Convert(argType)
|
|
return value, nil
|
|
}
|
|
return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType)
|
|
}
|
|
|
|
func intLike(typ reflect.Kind) bool {
|
|
switch typ {
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return true
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// indexArg checks if a reflect.Value can be used as an index, and converts it to int if possible.
|
|
func indexArg(index reflect.Value, cap int) (int, error) {
|
|
var x int64
|
|
switch index.Kind() {
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
x = index.Int()
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
x = int64(index.Uint())
|
|
case reflect.Invalid:
|
|
return 0, fmt.Errorf("cannot index slice/array with nil")
|
|
default:
|
|
return 0, fmt.Errorf("cannot index slice/array with type %s", index.Type())
|
|
}
|
|
if x < 0 || int(x) < 0 || int(x) > cap {
|
|
return 0, fmt.Errorf("index out of range: %d", x)
|
|
}
|
|
return int(x), nil
|
|
}
|
|
|
|
// Indexing.
|
|
|
|
// index returns the result of indexing its first argument by the following
|
|
// arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each
|
|
// indexed item must be a map, slice, or array.
|
|
func index(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
|
|
item = indirectInterface(item)
|
|
if !item.IsValid() {
|
|
return reflect.Value{}, fmt.Errorf("index of untyped nil")
|
|
}
|
|
for _, index := range indexes {
|
|
index = indirectInterface(index)
|
|
var isNil bool
|
|
if item, isNil = indirect(item); isNil {
|
|
return reflect.Value{}, fmt.Errorf("index of nil pointer")
|
|
}
|
|
switch item.Kind() {
|
|
case reflect.Array, reflect.Slice, reflect.String:
|
|
x, err := indexArg(index, item.Len())
|
|
if err != nil {
|
|
return reflect.Value{}, err
|
|
}
|
|
item = item.Index(x)
|
|
case reflect.Map:
|
|
index, err := prepareArg(index, item.Type().Key())
|
|
if err != nil {
|
|
return reflect.Value{}, err
|
|
}
|
|
if x := item.MapIndex(index); x.IsValid() {
|
|
item = x
|
|
} else {
|
|
item = reflect.Zero(item.Type().Elem())
|
|
}
|
|
case reflect.Invalid:
|
|
// the loop holds invariant: item.IsValid()
|
|
panic("unreachable")
|
|
default:
|
|
return reflect.Value{}, fmt.Errorf("can't index item of type %s", item.Type())
|
|
}
|
|
}
|
|
return item, nil
|
|
}
|
|
|
|
// Slicing.
|
|
|
|
// slice returns the result of slicing its first argument by the remaining
|
|
// arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2], while "slice x"
|
|
// is x[:], "slice x 1" is x[1:], and "slice x 1 2 3" is x[1:2:3]. The first
|
|
// argument must be a string, slice, or array.
|
|
func slice(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
|
|
item = indirectInterface(item)
|
|
if !item.IsValid() {
|
|
return reflect.Value{}, fmt.Errorf("slice of untyped nil")
|
|
}
|
|
if len(indexes) > 3 {
|
|
return reflect.Value{}, fmt.Errorf("too many slice indexes: %d", len(indexes))
|
|
}
|
|
var cap int
|
|
switch item.Kind() {
|
|
case reflect.String:
|
|
if len(indexes) == 3 {
|
|
return reflect.Value{}, fmt.Errorf("cannot 3-index slice a string")
|
|
}
|
|
cap = item.Len()
|
|
case reflect.Array, reflect.Slice:
|
|
cap = item.Cap()
|
|
default:
|
|
return reflect.Value{}, fmt.Errorf("can't slice item of type %s", item.Type())
|
|
}
|
|
// set default values for cases item[:], item[i:].
|
|
idx := [3]int{0, item.Len()}
|
|
for i, index := range indexes {
|
|
x, err := indexArg(index, cap)
|
|
if err != nil {
|
|
return reflect.Value{}, err
|
|
}
|
|
idx[i] = x
|
|
}
|
|
// given item[i:j], make sure i <= j.
|
|
if idx[0] > idx[1] {
|
|
return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[0], idx[1])
|
|
}
|
|
if len(indexes) < 3 {
|
|
return item.Slice(idx[0], idx[1]), nil
|
|
}
|
|
// given item[i:j:k], make sure i <= j <= k.
|
|
if idx[1] > idx[2] {
|
|
return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[1], idx[2])
|
|
}
|
|
return item.Slice3(idx[0], idx[1], idx[2]), nil
|
|
}
|
|
|
|
// Length
|
|
|
|
// length returns the length of the item, with an error if it has no defined length.
|
|
func length(item reflect.Value) (int, error) {
|
|
item, isNil := indirect(item)
|
|
if isNil {
|
|
return 0, fmt.Errorf("len of nil pointer")
|
|
}
|
|
switch item.Kind() {
|
|
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String:
|
|
return item.Len(), nil
|
|
}
|
|
return 0, fmt.Errorf("len of type %s", item.Type())
|
|
}
|
|
|
|
// Function invocation
|
|
|
|
func emptyCall(fn reflect.Value, args ...reflect.Value) reflect.Value {
|
|
panic("unreachable") // implemented as a special case in evalCall
|
|
}
|
|
|
|
// call returns the result of evaluating the first argument as a function.
|
|
// The function must return 1 result, or 2 results, the second of which is an error.
|
|
func call(name string, fn reflect.Value, args ...reflect.Value) (reflect.Value, error) {
|
|
fn = indirectInterface(fn)
|
|
if !fn.IsValid() {
|
|
return reflect.Value{}, fmt.Errorf("call of nil")
|
|
}
|
|
typ := fn.Type()
|
|
if typ.Kind() != reflect.Func {
|
|
return reflect.Value{}, fmt.Errorf("non-function %s of type %s", name, typ)
|
|
}
|
|
|
|
if err := goodFunc(name, typ); err != nil {
|
|
return reflect.Value{}, err
|
|
}
|
|
numIn := typ.NumIn()
|
|
var dddType reflect.Type
|
|
if typ.IsVariadic() {
|
|
if len(args) < numIn-1 {
|
|
return reflect.Value{}, fmt.Errorf("wrong number of args for %s: got %d want at least %d", name, len(args), numIn-1)
|
|
}
|
|
dddType = typ.In(numIn - 1).Elem()
|
|
} else {
|
|
if len(args) != numIn {
|
|
return reflect.Value{}, fmt.Errorf("wrong number of args for %s: got %d want %d", name, len(args), numIn)
|
|
}
|
|
}
|
|
argv := make([]reflect.Value, len(args))
|
|
for i, arg := range args {
|
|
arg = indirectInterface(arg)
|
|
// Compute the expected type. Clumsy because of variadics.
|
|
argType := dddType
|
|
if !typ.IsVariadic() || i < numIn-1 {
|
|
argType = typ.In(i)
|
|
}
|
|
|
|
var err error
|
|
if argv[i], err = prepareArg(arg, argType); err != nil {
|
|
return reflect.Value{}, fmt.Errorf("arg %d: %w", i, err)
|
|
}
|
|
}
|
|
return safeCall(fn, argv)
|
|
}
|
|
|
|
// safeCall runs fun.Call(args), and returns the resulting value and error, if
|
|
// any. If the call panics, the panic value is returned as an error.
|
|
func safeCall(fun reflect.Value, args []reflect.Value) (val reflect.Value, err error) {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
if e, ok := r.(error); ok {
|
|
err = e
|
|
} else {
|
|
err = fmt.Errorf("%v", r)
|
|
}
|
|
}
|
|
}()
|
|
ret := fun.Call(args)
|
|
if len(ret) == 2 && !ret[1].IsNil() {
|
|
return ret[0], ret[1].Interface().(error)
|
|
}
|
|
return ret[0], nil
|
|
}
|
|
|
|
// Boolean logic.
|
|
|
|
func truth(arg reflect.Value) bool {
|
|
t, _ := isTrue(indirectInterface(arg))
|
|
return t
|
|
}
|
|
|
|
// and computes the Boolean AND of its arguments, returning
|
|
// the first false argument it encounters, or the last argument.
|
|
func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
|
|
panic("unreachable") // implemented as a special case in evalCall
|
|
}
|
|
|
|
// or computes the Boolean OR of its arguments, returning
|
|
// the first true argument it encounters, or the last argument.
|
|
func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
|
|
panic("unreachable") // implemented as a special case in evalCall
|
|
}
|
|
|
|
// not returns the Boolean negation of its argument.
|
|
func not(arg reflect.Value) bool {
|
|
return !truth(arg)
|
|
}
|
|
|
|
// Comparison.
|
|
|
|
// TODO: Perhaps allow comparison between signed and unsigned integers.
|
|
|
|
var (
|
|
errBadComparisonType = errors.New("invalid type for comparison")
|
|
errBadComparison = errors.New("incompatible types for comparison")
|
|
errNoComparison = errors.New("missing argument for comparison")
|
|
)
|
|
|
|
type kind int
|
|
|
|
const (
|
|
invalidKind kind = iota
|
|
boolKind
|
|
complexKind
|
|
intKind
|
|
floatKind
|
|
stringKind
|
|
uintKind
|
|
)
|
|
|
|
func basicKind(v reflect.Value) (kind, error) {
|
|
switch v.Kind() {
|
|
case reflect.Bool:
|
|
return boolKind, nil
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return intKind, nil
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return uintKind, nil
|
|
case reflect.Float32, reflect.Float64:
|
|
return floatKind, nil
|
|
case reflect.Complex64, reflect.Complex128:
|
|
return complexKind, nil
|
|
case reflect.String:
|
|
return stringKind, nil
|
|
}
|
|
return invalidKind, errBadComparisonType
|
|
}
|
|
|
|
// isNil returns true if v is the zero reflect.Value, or nil of its type.
|
|
func isNil(v reflect.Value) bool {
|
|
if !v.IsValid() {
|
|
return true
|
|
}
|
|
switch v.Kind() {
|
|
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice:
|
|
return v.IsNil()
|
|
}
|
|
return false
|
|
}
|
|
|
|
// canCompare reports whether v1 and v2 are both the same kind, or one is nil.
|
|
// Called only when dealing with nillable types, or there's about to be an error.
|
|
func canCompare(v1, v2 reflect.Value) bool {
|
|
k1 := v1.Kind()
|
|
k2 := v2.Kind()
|
|
if k1 == k2 {
|
|
return true
|
|
}
|
|
// We know the type can be compared to nil.
|
|
return k1 == reflect.Invalid || k2 == reflect.Invalid
|
|
}
|
|
|
|
// eq evaluates the comparison a == b || a == c || ...
|
|
func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) {
|
|
arg1 = indirectInterface(arg1)
|
|
if len(arg2) == 0 {
|
|
return false, errNoComparison
|
|
}
|
|
k1, _ := basicKind(arg1)
|
|
for _, arg := range arg2 {
|
|
arg = indirectInterface(arg)
|
|
k2, _ := basicKind(arg)
|
|
truth := false
|
|
if k1 != k2 {
|
|
// Special case: Can compare integer values regardless of type's sign.
|
|
switch {
|
|
case k1 == intKind && k2 == uintKind:
|
|
truth = arg1.Int() >= 0 && uint64(arg1.Int()) == arg.Uint()
|
|
case k1 == uintKind && k2 == intKind:
|
|
truth = arg.Int() >= 0 && arg1.Uint() == uint64(arg.Int())
|
|
default:
|
|
if arg1.IsValid() && arg.IsValid() {
|
|
return false, errBadComparison
|
|
}
|
|
}
|
|
} else {
|
|
switch k1 {
|
|
case boolKind:
|
|
truth = arg1.Bool() == arg.Bool()
|
|
case complexKind:
|
|
truth = arg1.Complex() == arg.Complex()
|
|
case floatKind:
|
|
truth = arg1.Float() == arg.Float()
|
|
case intKind:
|
|
truth = arg1.Int() == arg.Int()
|
|
case stringKind:
|
|
truth = arg1.String() == arg.String()
|
|
case uintKind:
|
|
truth = arg1.Uint() == arg.Uint()
|
|
default:
|
|
if !canCompare(arg1, arg) {
|
|
return false, fmt.Errorf("non-comparable types %s: %v, %s: %v", arg1, arg1.Type(), arg.Type(), arg)
|
|
}
|
|
if isNil(arg1) || isNil(arg) {
|
|
truth = isNil(arg) == isNil(arg1)
|
|
} else {
|
|
if !arg.Type().Comparable() {
|
|
return false, fmt.Errorf("non-comparable type %s: %v", arg, arg.Type())
|
|
}
|
|
truth = arg1.Interface() == arg.Interface()
|
|
}
|
|
}
|
|
}
|
|
if truth {
|
|
return true, nil
|
|
}
|
|
}
|
|
return false, nil
|
|
}
|
|
|
|
// ne evaluates the comparison a != b.
|
|
func ne(arg1, arg2 reflect.Value) (bool, error) {
|
|
// != is the inverse of ==.
|
|
equal, err := eq(arg1, arg2)
|
|
return !equal, err
|
|
}
|
|
|
|
// lt evaluates the comparison a < b.
|
|
func lt(arg1, arg2 reflect.Value) (bool, error) {
|
|
arg1 = indirectInterface(arg1)
|
|
k1, err := basicKind(arg1)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
arg2 = indirectInterface(arg2)
|
|
k2, err := basicKind(arg2)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
truth := false
|
|
if k1 != k2 {
|
|
// Special case: Can compare integer values regardless of type's sign.
|
|
switch {
|
|
case k1 == intKind && k2 == uintKind:
|
|
truth = arg1.Int() < 0 || uint64(arg1.Int()) < arg2.Uint()
|
|
case k1 == uintKind && k2 == intKind:
|
|
truth = arg2.Int() >= 0 && arg1.Uint() < uint64(arg2.Int())
|
|
default:
|
|
return false, errBadComparison
|
|
}
|
|
} else {
|
|
switch k1 {
|
|
case boolKind, complexKind:
|
|
return false, errBadComparisonType
|
|
case floatKind:
|
|
truth = arg1.Float() < arg2.Float()
|
|
case intKind:
|
|
truth = arg1.Int() < arg2.Int()
|
|
case stringKind:
|
|
truth = arg1.String() < arg2.String()
|
|
case uintKind:
|
|
truth = arg1.Uint() < arg2.Uint()
|
|
default:
|
|
panic("invalid kind")
|
|
}
|
|
}
|
|
return truth, nil
|
|
}
|
|
|
|
// le evaluates the comparison <= b.
|
|
func le(arg1, arg2 reflect.Value) (bool, error) {
|
|
// <= is < or ==.
|
|
lessThan, err := lt(arg1, arg2)
|
|
if lessThan || err != nil {
|
|
return lessThan, err
|
|
}
|
|
return eq(arg1, arg2)
|
|
}
|
|
|
|
// gt evaluates the comparison a > b.
|
|
func gt(arg1, arg2 reflect.Value) (bool, error) {
|
|
// > is the inverse of <=.
|
|
lessOrEqual, err := le(arg1, arg2)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return !lessOrEqual, nil
|
|
}
|
|
|
|
// ge evaluates the comparison a >= b.
|
|
func ge(arg1, arg2 reflect.Value) (bool, error) {
|
|
// >= is the inverse of <.
|
|
lessThan, err := lt(arg1, arg2)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return !lessThan, nil
|
|
}
|
|
|
|
// HTML escaping.
|
|
|
|
var (
|
|
htmlQuot = []byte(""") // shorter than """
|
|
htmlApos = []byte("'") // shorter than "'" and apos was not in HTML until HTML5
|
|
htmlAmp = []byte("&")
|
|
htmlLt = []byte("<")
|
|
htmlGt = []byte(">")
|
|
htmlNull = []byte("\uFFFD")
|
|
)
|
|
|
|
// HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
|
|
func HTMLEscape(w io.Writer, b []byte) {
|
|
last := 0
|
|
for i, c := range b {
|
|
var html []byte
|
|
switch c {
|
|
case '\000':
|
|
html = htmlNull
|
|
case '"':
|
|
html = htmlQuot
|
|
case '\'':
|
|
html = htmlApos
|
|
case '&':
|
|
html = htmlAmp
|
|
case '<':
|
|
html = htmlLt
|
|
case '>':
|
|
html = htmlGt
|
|
default:
|
|
continue
|
|
}
|
|
w.Write(b[last:i])
|
|
w.Write(html)
|
|
last = i + 1
|
|
}
|
|
w.Write(b[last:])
|
|
}
|
|
|
|
// HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
|
|
func HTMLEscapeString(s string) string {
|
|
// Avoid allocation if we can.
|
|
if !strings.ContainsAny(s, "'\"&<>\000") {
|
|
return s
|
|
}
|
|
var b strings.Builder
|
|
HTMLEscape(&b, []byte(s))
|
|
return b.String()
|
|
}
|
|
|
|
// HTMLEscaper returns the escaped HTML equivalent of the textual
|
|
// representation of its arguments.
|
|
func HTMLEscaper(args ...any) string {
|
|
return HTMLEscapeString(evalArgs(args))
|
|
}
|
|
|
|
// JavaScript escaping.
|
|
|
|
var (
|
|
jsLowUni = []byte(`\u00`)
|
|
hex = []byte("0123456789ABCDEF")
|
|
|
|
jsBackslash = []byte(`\\`)
|
|
jsApos = []byte(`\'`)
|
|
jsQuot = []byte(`\"`)
|
|
jsLt = []byte(`\u003C`)
|
|
jsGt = []byte(`\u003E`)
|
|
jsAmp = []byte(`\u0026`)
|
|
jsEq = []byte(`\u003D`)
|
|
)
|
|
|
|
// JSEscape writes to w the escaped JavaScript equivalent of the plain text data b.
|
|
func JSEscape(w io.Writer, b []byte) {
|
|
last := 0
|
|
for i := 0; i < len(b); i++ {
|
|
c := b[i]
|
|
|
|
if !jsIsSpecial(rune(c)) {
|
|
// fast path: nothing to do
|
|
continue
|
|
}
|
|
w.Write(b[last:i])
|
|
|
|
if c < utf8.RuneSelf {
|
|
// Quotes, slashes and angle brackets get quoted.
|
|
// Control characters get written as \u00XX.
|
|
switch c {
|
|
case '\\':
|
|
w.Write(jsBackslash)
|
|
case '\'':
|
|
w.Write(jsApos)
|
|
case '"':
|
|
w.Write(jsQuot)
|
|
case '<':
|
|
w.Write(jsLt)
|
|
case '>':
|
|
w.Write(jsGt)
|
|
case '&':
|
|
w.Write(jsAmp)
|
|
case '=':
|
|
w.Write(jsEq)
|
|
default:
|
|
w.Write(jsLowUni)
|
|
t, b := c>>4, c&0x0f
|
|
w.Write(hex[t : t+1])
|
|
w.Write(hex[b : b+1])
|
|
}
|
|
} else {
|
|
// Unicode rune.
|
|
r, size := utf8.DecodeRune(b[i:])
|
|
if unicode.IsPrint(r) {
|
|
w.Write(b[i : i+size])
|
|
} else {
|
|
fmt.Fprintf(w, "\\u%04X", r)
|
|
}
|
|
i += size - 1
|
|
}
|
|
last = i + 1
|
|
}
|
|
w.Write(b[last:])
|
|
}
|
|
|
|
// JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
|
|
func JSEscapeString(s string) string {
|
|
// Avoid allocation if we can.
|
|
if strings.IndexFunc(s, jsIsSpecial) < 0 {
|
|
return s
|
|
}
|
|
var b strings.Builder
|
|
JSEscape(&b, []byte(s))
|
|
return b.String()
|
|
}
|
|
|
|
func jsIsSpecial(r rune) bool {
|
|
switch r {
|
|
case '\\', '\'', '"', '<', '>', '&', '=':
|
|
return true
|
|
}
|
|
return r < ' ' || utf8.RuneSelf <= r
|
|
}
|
|
|
|
// JSEscaper returns the escaped JavaScript equivalent of the textual
|
|
// representation of its arguments.
|
|
func JSEscaper(args ...any) string {
|
|
return JSEscapeString(evalArgs(args))
|
|
}
|
|
|
|
// URLQueryEscaper returns the escaped value of the textual representation of
|
|
// its arguments in a form suitable for embedding in a URL query.
|
|
func URLQueryEscaper(args ...any) string {
|
|
return url.QueryEscape(evalArgs(args))
|
|
}
|
|
|
|
// evalArgs formats the list of arguments into a string. It is therefore equivalent to
|
|
//
|
|
// fmt.Sprint(args...)
|
|
//
|
|
// except that each argument is indirected (if a pointer), as required,
|
|
// using the same rules as the default string evaluation during template
|
|
// execution.
|
|
func evalArgs(args []any) string {
|
|
ok := false
|
|
var s string
|
|
// Fast path for simple common case.
|
|
if len(args) == 1 {
|
|
s, ok = args[0].(string)
|
|
}
|
|
if !ok {
|
|
for i, arg := range args {
|
|
a, ok := printableValue(reflect.ValueOf(arg))
|
|
if ok {
|
|
args[i] = a
|
|
} // else let fmt do its thing
|
|
}
|
|
s = fmt.Sprint(args...)
|
|
}
|
|
return s
|
|
}
|