// Copyright 2022 The Hugo Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package template import ( "context" "io" "reflect" "github.com/gohugoio/hugo/common/hreflect" "github.com/gohugoio/hugo/tpl/internal/go_templates/texttemplate/parse" ) /* This files contains the Hugo related addons. All the other files in this package is auto generated. */ // Export it so we can populate Hugo's func map with it, which makes it faster. var GoFuncs = builtinFuncs() // Preparer prepares the template before execution. type Preparer interface { Prepare() (*Template, error) } // ExecHelper allows some custom eval hooks. type ExecHelper interface { Init(ctx context.Context, tmpl Preparer) GetFunc(ctx context.Context, tmpl Preparer, name string) (reflect.Value, reflect.Value, bool) GetMethod(ctx context.Context, tmpl Preparer, receiver reflect.Value, name string) (method reflect.Value, firstArg reflect.Value) GetMapValue(ctx context.Context, tmpl Preparer, receiver, key reflect.Value) (reflect.Value, bool) } // Executer executes a given template. type Executer interface { ExecuteWithContext(ctx context.Context, p Preparer, wr io.Writer, data any) error } type executer struct { helper ExecHelper } func NewExecuter(helper ExecHelper) Executer { return &executer{helper: helper} } type ( pageContextKeyType string hasLockContextKeyType string stackContextKeyType string ) const ( // The data page passed to ExecuteWithContext gets stored with this key. PageContextKey = pageContextKeyType("page") // Used in partialCached to signal to nested templates that a lock is already taken. HasLockContextKey = hasLockContextKeyType("hasLock") ) // Note: The context is currently not fully implemeted in Hugo. This is a work in progress. func (t *executer) ExecuteWithContext(ctx context.Context, p Preparer, wr io.Writer, data any) error { if ctx == nil { panic("nil context") } tmpl, err := p.Prepare() if err != nil { return err } value, ok := data.(reflect.Value) if !ok { value = reflect.ValueOf(data) } state := &state{ ctx: ctx, helper: t.helper, prep: p, tmpl: tmpl, wr: wr, vars: []variable{{"$", value}}, } t.helper.Init(ctx, p) return tmpl.executeWithState(state, value) } // Prepare returns a template ready for execution. func (t *Template) Prepare() (*Template, error) { return t, nil } func (t *Template) executeWithState(state *state, value reflect.Value) (err error) { defer errRecover(&err) if t.Tree == nil || t.Root == nil { state.errorf("%q is an incomplete or empty template", t.Name()) } state.walk(value, t.Root) return } // Below are modified structs etc. The changes are marked with "Added for Hugo." // state represents the state of an execution. It's not part of the // template so that multiple executions of the same template // can execute in parallel. type state struct { tmpl *Template ctx context.Context // Added for Hugo. The orignal data context. prep Preparer // Added for Hugo. helper ExecHelper // Added for Hugo. wr io.Writer node parse.Node // current node, for errors vars []variable // push-down stack of variable values. depth int // the height of the stack of executing templates. } func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { s.at(node) name := node.Ident var function reflect.Value // Added for Hugo. var first reflect.Value var ok bool var isBuiltin bool if s.helper != nil { isBuiltin = name == "and" || name == "or" function, first, ok = s.helper.GetFunc(s.ctx, s.prep, name) } if !ok { function, isBuiltin, ok = findFunction(name, s.tmpl) } if !ok { s.errorf("%q is not a defined function", name) } if first != zero { return s.evalCall(dot, function, isBuiltin, cmd, name, args, final, first) } return s.evalCall(dot, function, isBuiltin, cmd, name, args, final) } // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). // The 'final' argument represents the return value from the preceding // value of the pipeline, if any. func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { if !receiver.IsValid() { if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. s.errorf("nil data; no entry for key %q", fieldName) } return zero } typ := receiver.Type() receiver, isNil := indirect(receiver) if receiver.Kind() == reflect.Interface && isNil { // Calling a method on a nil interface can't work. The // MethodByName method call below would panic. s.errorf("nil pointer evaluating %s.%s", typ, fieldName) return zero } // Unless it's an interface, need to get to a value of type *T to guarantee // we see all methods of T and *T. ptr := receiver if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() { ptr = ptr.Addr() } // Added for Hugo. var first reflect.Value var method reflect.Value if s.helper != nil { method, first = s.helper.GetMethod(s.ctx, s.prep, ptr, fieldName) } else { method = ptr.MethodByName(fieldName) } if method.IsValid() { if first != zero { return s.evalCall(dot, method, false, node, fieldName, args, final, first) } return s.evalCall(dot, method, false, node, fieldName, args, final) } if method := ptr.MethodByName(fieldName); method.IsValid() { return s.evalCall(dot, method, false, node, fieldName, args, final) } hasArgs := len(args) > 1 || final != missingVal // It's not a method; must be a field of a struct or an element of a map. switch receiver.Kind() { case reflect.Struct: tField, ok := receiver.Type().FieldByName(fieldName) if ok { field, err := receiver.FieldByIndexErr(tField.Index) if !tField.IsExported() { s.errorf("%s is an unexported field of struct type %s", fieldName, typ) } if err != nil { s.errorf("%v", err) } // If it's a function, we must call it. if hasArgs { s.errorf("%s has arguments but cannot be invoked as function", fieldName) } return field } case reflect.Map: // If it's a map, attempt to use the field name as a key. nameVal := reflect.ValueOf(fieldName) if nameVal.Type().AssignableTo(receiver.Type().Key()) { if hasArgs { s.errorf("%s is not a method but has arguments", fieldName) } var result reflect.Value if s.helper != nil { // Added for Hugo. result, _ = s.helper.GetMapValue(s.ctx, s.prep, receiver, nameVal) } else { result = receiver.MapIndex(nameVal) } if !result.IsValid() { switch s.tmpl.option.missingKey { case mapInvalid: // Just use the invalid value. case mapZeroValue: result = reflect.Zero(receiver.Type().Elem()) case mapError: s.errorf("map has no entry for key %q", fieldName) } } return result } case reflect.Pointer: etyp := receiver.Type().Elem() if etyp.Kind() == reflect.Struct { if _, ok := etyp.FieldByName(fieldName); !ok { // If there's no such field, say "can't evaluate" // instead of "nil pointer evaluating". break } } if isNil { s.errorf("nil pointer evaluating %s.%s", typ, fieldName) } } s.errorf("can't evaluate field %s in type %s", fieldName, typ) panic("not reached") } // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] // as the function itself. func (s *state) evalCall(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value, first ...reflect.Value) reflect.Value { if args != nil { args = args[1:] // Zeroth arg is function name/node; not passed to function. } typ := fun.Type() numFirst := len(first) numIn := len(args) + numFirst // Added for Hugo if final != missingVal { numIn++ } numFixed := len(args) + len(first) // Adjusted for Hugo if typ.IsVariadic() { numFixed = typ.NumIn() - 1 // last arg is the variadic one. if numIn < numFixed { s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) } } else if numIn != typ.NumIn() { s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) } if !goodFunc(typ) { // TODO: This could still be a confusing error; maybe goodFunc should provide info. s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) } unwrap := func(v reflect.Value) reflect.Value { if v.Type() == reflectValueType { v = v.Interface().(reflect.Value) } return v } // Special case for builtin and/or, which short-circuit. if isBuiltin && (name == "and" || name == "or") { argType := typ.In(0) var v reflect.Value for _, arg := range args { v = s.evalArg(dot, argType, arg).Interface().(reflect.Value) if truth(v) == (name == "or") { // This value was already unwrapped // by the .Interface().(reflect.Value). return v } } if final != missingVal { // The last argument to and/or is coming from // the pipeline. We didn't short circuit on an earlier // argument, so we are going to return this one. // We don't have to evaluate final, but we do // have to check its type. Then, since we are // going to return it, we have to unwrap it. v = unwrap(s.validateType(final, argType)) } return v } // Build the arg list. argv := make([]reflect.Value, numIn) // Args must be evaluated. Fixed args first. i := len(first) // Adjusted for Hugo. for ; i < numFixed && i < len(args)+numFirst; i++ { // Adjusted for Hugo. argv[i] = s.evalArg(dot, typ.In(i), args[i-numFirst]) // Adjusted for Hugo. } // Now the ... args. if typ.IsVariadic() { argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. for ; i < len(args)+numFirst; i++ { // Adjusted for Hugo. argv[i] = s.evalArg(dot, argType, args[i-numFirst]) // Adjusted for Hugo. } } // Add final value if necessary. if final != missingVal { t := typ.In(typ.NumIn() - 1) if typ.IsVariadic() { if numIn-1 < numFixed { // The added final argument corresponds to a fixed parameter of the function. // Validate against the type of the actual parameter. t = typ.In(numIn - 1) } else { // The added final argument corresponds to the variadic part. // Validate against the type of the elements of the variadic slice. t = t.Elem() } } argv[i] = s.validateType(final, t) } // Added for Hugo for i := 0; i < len(first); i++ { argv[i] = s.validateType(first[i], typ.In(i)) } v, err := safeCall(fun, argv) // If we have an error that is not nil, stop execution and return that // error to the caller. if err != nil { s.at(node) s.errorf("error calling %s: %w", name, err) } return unwrap(v) } func isTrue(val reflect.Value) (truth, ok bool) { return hreflect.IsTruthfulValue(val), true }