From 9d93a95d32134d1db348e975fd147efe79ef4c90 Mon Sep 17 00:00:00 2001 From: Pol Dellaiera Date: Sun, 4 Sep 2022 20:48:57 +0200 Subject: [PATCH] docs: Improve consistency in MathJax examples. Signed-off-by: Pol Dellaiera --- public/docs/features.md | 17 +++++++++-------- 1 file changed, 9 insertions(+), 8 deletions(-) diff --git a/public/docs/features.md b/public/docs/features.md index b56a1c5ad..c28969521 100644 --- a/public/docs/features.md +++ b/public/docs/features.md @@ -250,17 +250,18 @@ Note that not all servers allow embedding their content. See [our FAQ](https://d ### MathJax -You can render *LaTeX* mathematical expressions using **MathJax**, as on [math.stackexchange.com](https://math.stackexchange.com/): - -The *Gamma function* satisfying $\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N$ is via the Euler integral +You can render *LaTeX* mathematical expressions using [**MathJax**](https://www.mathjax.org/), +as on [math.stackexchange.com](https://math.stackexchange.com/). Examples: +* The Euler's identity: $e^{i\pi} + 1 = 0$ +* The solution of $f(x)=ax^2+bx+c$ where $a \neq 0$ and $a, b, c \in R$ is $$ -x = {-b \pm \sqrt{b^2-4ac} \over 2a}. -$$ - -$$ -\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. +x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$ +* The *Gamma function*: $\Gamma(n) = \begin{cases} + \displaystyle (n-1)!\quad\forall n\in\mathbb N\\ + \displaystyle \int_0^\infty t^{n-1}e^{-t}dt\quad\forall n\in\mathbb R^*_+ + \end{cases}$ > More information about **LaTeX** mathematical expressions [here](https://meta.math.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference).