mirror of
				https://github.com/Brandon-Rozek/website.git
				synced 2025-10-30 21:41:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			123 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
	
		
			5 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|   <meta charset="utf-8" />
 | |
|   <meta name="author" content="Fredrik Danielsson, http://lostkeys.se">
 | |
|   <meta name="viewport" content="width=device-width, initial-scale=1.0">
 | |
|   <meta name="robots" content="noindex" />
 | |
|     <title>Brandon Rozek</title>
 | |
|   <link rel="stylesheet" href="themes/bitsandpieces/styles/main.css" type="text/css" />
 | |
|   <link rel="stylesheet" href="themes/bitsandpieces/styles/highlightjs-github.css" type="text/css" />
 | |
| </head>
 | |
| <body>
 | |
| 
 | |
| <aside class="main-nav">
 | |
| <nav>
 | |
|   <ul>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Findex.html" data-shortcut="">
 | |
|           Home
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fcourses.html" data-shortcut="">
 | |
|           Courses
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Flabaide.html" data-shortcut="">
 | |
|           Lab Aide
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fpresentations.html" data-shortcut="">
 | |
|           Presentations
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fresearch.html" data-shortcut="">
 | |
|           Research
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Ftranscript.html" data-shortcut="">
 | |
|           Transcript
 | |
|                   </a>
 | |
|       </li>
 | |
|       </ul>
 | |
| </nav>
 | |
| </aside>
 | |
| <main class="main-content">
 | |
|   <article class="article">
 | |
|     <h1>Principal Component Analysis Pt. 1</h1>
 | |
| <h2>What is PCA?</h2>
 | |
| <p>Principal component analysis is a statistical procedure that performs an orthogonal transformation to convert a set of variables into a set of linearly uncorrelated variables called principle components.</p>
 | |
| <p>Number of distinct principle components equals $min(# Variables, # Observations - 1)$</p>
 | |
| <p>The transformation is defined in such a way that the first principle component has the largest possible variance explained in the data.</p>
 | |
| <p>Each succeeding component has the highest possible variance under the constraint of having to be orthogonal to the preceding components.</p>
 | |
| <p>PCA is sensitive to the relative scaling of the original variables.</p>
 | |
| <h3>Results of a PCA</h3>
 | |
| <p>Results are discussed in terms of <em>component scores</em> which is the transformed variables and <em>loadings</em> which is the weight by which each original variable should be multiplied to get the component score.</p>
 | |
| <h2>Assumptions of PCA</h2>
 | |
| <ol>
 | |
| <li>Linearity</li>
 | |
| <li>Large variances are important and small variances denote noise</li>
 | |
| <li>Principal components are orthogonal</li>
 | |
| </ol>
 | |
| <h2>Why perform PCA?</h2>
 | |
| <ul>
 | |
| <li>Distance measures perform poorly in high-dimensional space (<a href="https://stats.stackexchange.com/questions/256172/why-always-doing-dimensionality-reduction-before-clustering">https://stats.stackexchange.com/questions/256172/why-always-doing-dimensionality-reduction-before-clustering</a>)</li>
 | |
| <li>Helps eliminates noise from the dataset (<a href="https://www.quora.com/Does-it-make-sense-to-perform-principal-components-analysis-before-clustering-if-the-original-data-has-too-many-dimensions-Is-it-theoretically-unsound-to-try-to-cluster-data-with-no-correlation">https://www.quora.com/Does-it-make-sense-to-perform-principal-components-analysis-before-clustering-if-the-original-data-has-too-many-dimensions-Is-it-theoretically-unsound-to-try-to-cluster-data-with-no-correlation</a>)</li>
 | |
| <li>One initial cost to help reduce further computations</li>
 | |
| </ul>
 | |
| <h2>Computing PCA</h2>
 | |
| <ol>
 | |
| <li>Subtract off the mean of each measurement type</li>
 | |
| <li>Compute the covariance matrix</li>
 | |
| <li>Take the eigenvalues/vectors of the covariance matrix</li>
 | |
| </ol>
 | |
| <h2>R Code</h2>
 | |
| <pre><code class="language-R">pcal = function(data) {
 | |
|   centered_data = scale(data)
 | |
|   covariance = cov(centered_data)
 | |
|   eigen_stuff = eigen(covariance)
 | |
|   sorted_indices = sort(eigen_stuff$values, 
 | |
|                         index.return = T, 
 | |
|                         decreasing = T)$ix
 | |
|   loadings = eigen_stuff$values[sorted_indices]
 | |
|   components = eigen_stuff$vectors[sorted_indices,]
 | |
|   combined_list = list(loadings, components)
 | |
|   names(combined_list) = c("Loadings", "Components")
 | |
|   return(combined_list)
 | |
| }</code></pre>
 | |
|   </article>
 | |
| </main>
 | |
| 
 | |
| <script src="themes/bitsandpieces/scripts/highlight.js"></script>
 | |
| <script src="themes/bitsandpieces/scripts/mousetrap.min.js"></script>
 | |
| <script type="text/x-mathjax-config">
 | |
|   MathJax.Hub.Config({
 | |
|     tex2jax: {
 | |
|       inlineMath: [ ['$','$'], ["\\(","\\)"] ],
 | |
|       processEscapes: true
 | |
|     }
 | |
|   });
 | |
| </script>
 | |
| 
 | |
| <script type="text/javascript"
 | |
|     src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 | |
| </script>
 | |
| <script>
 | |
|   hljs.initHighlightingOnLoad();
 | |
|   
 | |
|   document.querySelectorAll('.menuitem a').forEach(function(el) {
 | |
|     if (el.getAttribute('data-shortcut').length > 0) {
 | |
|       Mousetrap.bind(el.getAttribute('data-shortcut'), function() {
 | |
|         location.assign(el.getAttribute('href'));
 | |
|       });       
 | |
|     }
 | |
|   });
 | |
| </script>
 | |
| 
 | |
| </body>
 | |
| </html>
 |