mirror of
				https://github.com/Brandon-Rozek/website.git
				synced 2025-10-30 21:41:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			118 lines
		
	
	
	
		
			4.7 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
	
		
			4.7 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|   <meta charset="utf-8" />
 | |
|   <meta name="author" content="Fredrik Danielsson, http://lostkeys.se">
 | |
|   <meta name="viewport" content="width=device-width, initial-scale=1.0">
 | |
|   <meta name="robots" content="noindex" />
 | |
|     <title>Brandon Rozek</title>
 | |
|   <link rel="stylesheet" href="themes/bitsandpieces/styles/main.css" type="text/css" />
 | |
|   <link rel="stylesheet" href="themes/bitsandpieces/styles/highlightjs-github.css" type="text/css" />
 | |
| </head>
 | |
| <body>
 | |
| 
 | |
| <aside class="main-nav">
 | |
| <nav>
 | |
|   <ul>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Findex.html" data-shortcut="">
 | |
|           Home
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fcourses.html" data-shortcut="">
 | |
|           Courses
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Flabaide.html" data-shortcut="">
 | |
|           Lab Aide
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fpresentations.html" data-shortcut="">
 | |
|           Presentations
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fresearch.html" data-shortcut="">
 | |
|           Research
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Ftranscript.html" data-shortcut="">
 | |
|           Transcript
 | |
|                   </a>
 | |
|       </li>
 | |
|       </ul>
 | |
| </nav>
 | |
| </aside>
 | |
| <main class="main-content">
 | |
|   <article class="article">
 | |
|     <h1>K-Medoids</h1>
 | |
| <p>A medoid can be defined as the object of a cluster whose average dissimilarity to all the objects in the cluster is minimal.</p>
 | |
| <p>The K-medoids algorithm is related to k-means and the medoidshift algorithm. Both the k-means and k-medoids algorithms are partition and both attempt to minimize the distance between points in the cluster to it's center. In contrast to k-means, it chooses data points as centers and uses the Manhattan Norm to define the distance between data points instead of the Euclidean.</p>
 | |
| <p>This method is known to be more robust to noise and outliers compared to k-means since it minimizes the sum of pairwise dissimilarities instead of the sum of squared Euclidean distances.</p>
 | |
| <h2>Algorithms</h2>
 | |
| <p>There are several algorithms that have been created as an optimization to an exhaustive search. In this section, we'll discuss PAM and Voronoi iteration method.</p>
 | |
| <h3>Partitioning Around Medoids (PAM)</h3>
 | |
| <ol>
 | |
| <li>Select $k$ of the $n$ data points as medoids</li>
 | |
| <li>Associate each data point to the closes medoid</li>
 | |
| <li>While the cost of the configuration decreases:
 | |
| <ol>
 | |
| <li>For each medoid $m$, for each non-medoid data point $o$:
 | |
| <ol>
 | |
| <li>Swap $m$ and $o$, recompute the cost (sum of distances of points to their medoid)</li>
 | |
| <li>If the total cost of the configuration increased in the previous step, undo the swap</li>
 | |
| </ol></li>
 | |
| </ol></li>
 | |
| </ol>
 | |
| <h3>Voronoi Iteration Method</h3>
 | |
| <ol>
 | |
| <li>Select $k$ of the $n$ data points as medoids</li>
 | |
| <li>While the cost of the configuration decreases
 | |
| <ol>
 | |
| <li>In each cluster, make the point that minimizes the sum of distances within the cluster the medoid</li>
 | |
| <li>Reassign each point to the cluster defined by the closest medoid determined in the previous step.</li>
 | |
| </ol></li>
 | |
| </ol>
 | |
| <h3>Clustering Large Applications (CLARA</h3>
 | |
| <p>This is a variant of the PAM algorithm that relies on the sampling approach to handle large datasets. The cost of a particular cluster configuration is the mean cost of all the dissimilarities.</p>
 | |
| <h2>R Implementations</h2>
 | |
| <p>Both PAM and CLARA are defined in the <code>cluster</code> package in R.</p>
 | |
| <pre><code class="language-R">clara(x, k, metric = "euclidean", stand = FALSE, samples = 5, 
 | |
|       sampsize = min(n, 40 + 2 * k), trace = 0, medoids.x = TRUE,
 | |
|       keep.data = medoids.x, rngR = FALSE)</code></pre>
 | |
| <pre><code class="language-R">pam(x, k, metric = "euclidean", stand = FALSE)</code></pre>
 | |
|   </article>
 | |
| </main>
 | |
| 
 | |
| <script src="themes/bitsandpieces/scripts/highlight.js"></script>
 | |
| <script src="themes/bitsandpieces/scripts/mousetrap.min.js"></script>
 | |
| <script type="text/x-mathjax-config">
 | |
|   MathJax.Hub.Config({
 | |
|     tex2jax: {
 | |
|       inlineMath: [ ['$','$'], ["\\(","\\)"] ],
 | |
|       processEscapes: true
 | |
|     }
 | |
|   });
 | |
| </script>
 | |
| 
 | |
| <script type="text/javascript"
 | |
|     src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 | |
| </script>
 | |
| <script>
 | |
|   hljs.initHighlightingOnLoad();
 | |
|   
 | |
|   document.querySelectorAll('.menuitem a').forEach(function(el) {
 | |
|     if (el.getAttribute('data-shortcut').length > 0) {
 | |
|       Mousetrap.bind(el.getAttribute('data-shortcut'), function() {
 | |
|         location.assign(el.getAttribute('href'));
 | |
|       });       
 | |
|     }
 | |
|   });
 | |
| </script>
 | |
| 
 | |
| </body>
 | |
| </html>
 |