mirror of
				https://github.com/Brandon-Rozek/website.git
				synced 2025-10-31 05:41:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			100 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|   <meta charset="utf-8" />
 | |
|   <meta name="author" content="Fredrik Danielsson, http://lostkeys.se">
 | |
|   <meta name="viewport" content="width=device-width, initial-scale=1.0">
 | |
|   <meta name="robots" content="noindex" />
 | |
|     <title>Brandon Rozek</title>
 | |
|   <link rel="stylesheet" href="themes/bitsandpieces/styles/main.css" type="text/css" />
 | |
|   <link rel="stylesheet" href="themes/bitsandpieces/styles/highlightjs-github.css" type="text/css" />
 | |
| </head>
 | |
| <body>
 | |
| 
 | |
| <aside class="main-nav">
 | |
| <nav>
 | |
|   <ul>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Findex.html" data-shortcut="">
 | |
|           Home
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fcourses.html" data-shortcut="">
 | |
|           Courses
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Flabaide.html" data-shortcut="">
 | |
|           Lab Aide
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fpresentations.html" data-shortcut="">
 | |
|           Presentations
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Fresearch.html" data-shortcut="">
 | |
|           Research
 | |
|                   </a>
 | |
|       </li>
 | |
|           <li class="menuitem ">
 | |
|         <a href="index.html%3Ftranscript.html" data-shortcut="">
 | |
|           Transcript
 | |
|                   </a>
 | |
|       </li>
 | |
|       </ul>
 | |
| </nav>
 | |
| </aside>
 | |
| <main class="main-content">
 | |
|   <article class="article">
 | |
|     <h1>Introduction to Connectivity Based Models</h1>
 | |
| <p>Hierarchical algorithms combine observations to form clusters based on their distance.</p>
 | |
| <h2>Connectivity Methods</h2>
 | |
| <p>Hierarchal Clustering techniques can be subdivided depending on the method of going about it.</p>
 | |
| <p>First there are two different methods in forming the clusters <em>Agglomerative</em> and <em>Divisive</em></p>
 | |
| <p><u>Agglomerative</u> is when you combine the n individuals into groups through each iteration</p>
 | |
| <p><u>Divisive</u> is when you are separating one giant group into finer groupings with each iteration.</p>
 | |
| <p>Hierarchical methods are an irrevocable algorithm, once it joins or separates a grouping, it cannot be undone. As Kaufman and Rousseeuw (1990) colorfully comment: <em>"A hierarchical method suffers from the defect that it can never repair what was done in previous steps"</em>. </p>
 | |
| <p>It is the job of the statistician to decide when to stop the agglomerative or decisive algorithm, since having one giant cluster containing all observations or having each observation be a cluster isn't particularly useful.</p>
 | |
| <p>At different distances, different clusters are formed and are more readily represented using a <strong>dendrogram</strong>. These algorithms do not provide a unique solution but rather provide an extensive hierarchy of clusters that merge or divide at different distances.</p>
 | |
| <h2>Linkage Criterion</h2>
 | |
| <p>Apart from the method of forming clusters, the user also needs to decide on a linkage criterion to use. Meaning, how do you want to optimize your clusters.</p>
 | |
| <p>Do you want to group based on the nearest points in each cluster? Nearest Neighbor Clustering</p>
 | |
| <p>Or do you want to based on the farthest observations in each cluster? Farthest neighbor clustering.</p>
 | |
| <p><img src="http://www.multid.se/genex/onlinehelp/clustering_distances.png" alt="http://www.multid.se/genex/onlinehelp/clustering_distances.png" /></p>
 | |
| <h2>Shortcomings</h2>
 | |
| <p>This method is not very robust towards outliers, which will either show up as additional clusters or even cause other clusters to merge depending on the clustering method.</p>
 | |
| <p>As we go through this section, we will go into detail about the different linkage criterion and other parameters of this model.</p>
 | |
|   </article>
 | |
| </main>
 | |
| 
 | |
| <script src="themes/bitsandpieces/scripts/highlight.js"></script>
 | |
| <script src="themes/bitsandpieces/scripts/mousetrap.min.js"></script>
 | |
| <script type="text/x-mathjax-config">
 | |
|   MathJax.Hub.Config({
 | |
|     tex2jax: {
 | |
|       inlineMath: [ ['$','$'], ["\\(","\\)"] ],
 | |
|       processEscapes: true
 | |
|     }
 | |
|   });
 | |
| </script>
 | |
| 
 | |
| <script type="text/javascript"
 | |
|     src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 | |
| </script>
 | |
| <script>
 | |
|   hljs.initHighlightingOnLoad();
 | |
|   
 | |
|   document.querySelectorAll('.menuitem a').forEach(function(el) {
 | |
|     if (el.getAttribute('data-shortcut').length > 0) {
 | |
|       Mousetrap.bind(el.getAttribute('data-shortcut'), function() {
 | |
|         location.assign(el.getAttribute('href'));
 | |
|       });       
 | |
|     }
 | |
|   });
 | |
| </script>
 | |
| 
 | |
| </body>
 | |
| </html>
 |