
CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

CryptoSolve: Towards a Tool for the Symbolic
Analysis of Cryptographic Algorithms

Dalton Chichester 1 Wei Du 2 Raymond Kauffman 1

Hai Lin 3 Christopher Lynch 3 Andrew M. Marshall 1

Catherine A. Meadows 4 Paliath Narendran 2 Veena
Ravishankar 1 Luis Rovira 1 Brandon Rozek 5

1University of Mary Washington, Fredericksburg, VA, USA

2University at Albany–SUNY, Albany, NY, USA

3Clarkson University, Potsdam, NY, USA

4Naval Research Laboratory, Washington, DC, USA

5Rensselaer Polytechnic Institute, Troy, NY, USA

WRLA 2022

1 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

High Level Framework

We are presenting a preliminary version of a tool that
automatically synthesizes and verifies cryptographic algorithms.

Outline:

• Map the security property from the classical
computational definition to a symbolic security
equivalent. [Meadows, 2021]

• Apply symbolic techniques such as term rewriting and
unification to verify cryptographic algorithms.

• Automatically synthesize cryptosystems that satisfy the
security property.

2 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Cryptographic Mode of Operation

• At this point, the tool supports the verification of symbolic
security and invertibility of recursively defined modes of
operation with an xor-operation and encryption function.

• A cryptographic mode of operation takes a message of
arbitrary size and uses a block cipher to encrypt a fixed
size parts of a message.

3 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Core Security Question

• We considered the computational security property
IND$-CPA.

• That is, ciphertext indistinguishability from random under
chosen plaintext attack.

• An adversary carefully selects plaintexts to send to an
oracle in hopes of breaking symbolic security. An oracle
returns the ciphertext according to a mode of operation.

Can an adversary force the cryptosystem to produce an
equivalent sequence of ciphertexts modulo some equational
theory? If so, we call the cryptosystem symbolically insecure.

4 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Symbolic History

• Interactions between an adversary and an oracle in a
cryptosystem can be modeled by a symbolic history.

5 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Symbolic Problem

• The adversary then takes the symbolic history, and tries to
find a computable substitution1 for their plaintexts to
make some sequence of ciphertexts equivalent.

Symbolic History: [IV , p1, f (p1 ⊕ IV), p2, f (p2 ⊕ f (p1 ⊕ IV))]

Unification Problem: f (p1 ⊕ IV) =E? f (p2 ⊕ f (p1 ⊕ IV))

p1 =?? p2 =??

1More on constraints of computable substitutions later. Example:
adversary cannot compute f .

6 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Related Work

Tools closely related to ours include:

• ZooCrypt: Analyzes chosen plaintext and chosen
cipher-text security public-key encryption schemes built
from trapdoor permutations and hash functions.

• Linisynth: Generates and verifies multi-party computation
schemes using free-xor compatible garbled circuits.

The goal of CryptoSolve, however, is to serve as a tool for
designing and experimenting with multiple types of
cryptosystems, security properties, and algorithms.

7 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Tool Overview

Below is a categorized representation of the current capabilities
of our tool.

CryptoSolve

Symbolic Library
MOO Program

Generation

Symbolic Se-
curity Check

Invertibility
Checking

Term Library

Term Rewrite
Library

Unification

Custom MOO
Definition

Custom Sched-
ule Definition
Automated
MOO Con-
struction

Quick Syntac-
tic Checks

Collision Check

Cipher Block
Invertibility

MOO-Program
Invertibility

8 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Symbolic Library: Terms

f = Function("f", arity=1)

xor = Function("xor", arity=2)

IV = Constant("IV")

p1 = Variable("p1")

Construct CBC term

c1 = f(xor(p1, IV))

Helpful Methods

p1 in c1 # True

depth(c1) # 2

9 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Substitutions

p2 = Variable("p2")

c2 = f(xor(c1, p2))

sigma1 = SubstituteTerm()

sigma1.add(p1, Constant("0"))

sigma2 = SubstituteTerm()

sigma2.add(p2, Constant("0"))

Compose Substitions

sigma = sigma1 * sigma2

Apply Substitution

c2 * sigma # f(xor(f(xor(0, IV)), 0))

10 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Rewriting

x = Variable("x")

example_term = xor(xor(p1, p1), xor(p1, p1))

Rule: xor(x, x) -> 0

xor_rule = RewriteRule(xor(x, x), Constant("0"))

Application of a rule

xor_rule.apply(example_term)

{’’: 0, ’1’: xor(0, xor(p1, p1)), ’2’:

xor(xor(p1, p1), 0)}

Algorithms for finding variants and performing narrowing are
also included.

11 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Unification

• In our library, unification returns a set of substitutions
which each represent a most general unifier.
• {} means no unifiers were found.
• {SubstituteTerm()} is the identity unifier.

y = Variable("y")

a, b = Constant("a"), Constant("b")

Syntactic Unification

unif({Equation(xor(x, y), xor(a, b))})

{{ x -> a, y -> b }}

12 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

MOO⊕ Terms

We currently support analyzing modes of operations that are
consisted of MOO⊕ terms.

• These terms are defined over the signature
{⊕/2, 0/0, f /1} with the xor equational theory and f as a
free function symbol.

• The xor equational theory can be represented as a
combination of the Associative-Commutative (AC)
equational theory and the rewrite system
{x ⊕ x → 0, x ⊕ 0→ x}.

13 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Computable Substitutions

Recall that the adversary wishes to find a computable
substitution for their plaintexts to make some sequence of
ciphertexts equivalent.

• A substitution σ is computable w.r.t a symbolic history if
σ maps each variable to a term built up using the
operators 0 and ⊕ on terms returned by the oracle earlier
than x in P.

Note that the adversary cannot compute the f block cipher
and must instead rely on ciphertexts received from the oracle.

14 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Example

Consider the following symbolic history:
[IV , p1, f (p1 ⊕ IV), p2, f (p2 ⊕ f (p1 ⊕ IV))]

p1 Computable Substitution Components: 0, IV

p2 Computable Substitution Components: 0, IV , p1, f (p1,⊕IV)

15 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Unification and MOO Analysis

Currently we have two different unification algorithms for
MOO⊕ terms which ensure the computable substitution
constraint.

• f -rooted local unification

• ⊕-rooted local unification [Lin and Lynch, 2020]

16 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Security Library: MOO Program

We currently support several well-known cryptosystems and
allow for users to define their own.

@MOO.register("cipher_block_chaining")

def cipher_block_chaining(iteration, nonces, P, C):

f = Function("f", 1)

i = iteration - 1

if i == 0:

return f(

xor(P[0], nonces[0])

)

return f(

xor(P[i], C[i-1])

)

17 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

MOO Schedules

So far we have assumed that the oracle immediately replies to
the adversary. We support custom schedule types as well.

@MOO_Schedule.register("even")

def even_schedule(iteration: int) -> bool:

return iteration % 2 == 0

18 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

MOO Security Checks

With the MOO Program and Schedule defined we can check
for symbolic security.

moo_result = moo_check(

moo_name = "cipher_block_chaining",

schedule_name = "every",

unif_algo = p_syntactic, # f-rooted local

length_bound = 10

)

Interaction length bounds are included as this problem has
been shown to be undecidable. [Lin et al., 2021]

19 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

MOO Invertibility Check

• It is not a given that any MOO⊕ Program (even secure
ones) are invertible.
• Invertible modes of operations would allow the original

plaintext to be retrieved given the ciphertext and
decryption function f −1.

CBC is invertible

print(moo_result.invert_result) # True

20 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

MOO Generator

• Builds singly recursive definitions using the xor and f
function, and recursive references to prior cipher blocks.
• Current Limitations:

• A single nonce IV is used.
• The base case is fixed to IV .
• Only single recursion is used.
• Signature is limited to Σ = {⊕/2, 0/0, f /1}

from symcollab.moe import MOOGenerator

gen = MOOGenerator()

next(gen) # f(P[i])

21 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

User Interface

• We support testing symbolic security and invertibility for
both custom modes of operation and procedurally
generated modes of operation.

22 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Experiments

• Using MOOGenerator, we ran and recorded the results of
many automatically generated modes of operation.

Secure MOOs Found via Automatic Generation and Testing
1 C0 = IV ,Ci = f (f (f (P[i − 1])⊕ r)⊕ C [i − 1])
2 C0 = IV ,Ci = f (f (f (P[i]))⊕ C [i − 1]⊕ r)
3 C0 = IV ,Ci = f (f (P[i])⊕ C [i − 1])⊕ C [i − 1]
4 C0 = IV ,Ci = f (f (f (P[i])⊕ r ⊕ C [i − 1]))
5 C0 = IV ,Ci = f (f (P[i])⊕ C [i − 1])⊕ f (C [i − 1])

Table: Examples of secure MOOs found using the MOO generator

23 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Conclusions

We presented a tool for the symbolic analysis of cryptographic
algorithms. It supports:

• Checking symbolic security and invertibility.

• User-defined and automatic generation of modes of
operation.
• Constraints on the generated modes of operation.

• Requiring an initialization vector in the recursive definition.
• Bounding the number of times f is applied.

24 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Future Work

We plan to expand our tool beyond the current security
properties by using our techniques to analyze:

• Additional Cryptosystems

• Symbolic Authenticity

• Multi-Party Computation (e.g Garbled Circuits)

We also plan to further improve the current work by:

• Improve MOOGenerator and Webpage.

• Expanding the signature to include hash functions.

• Improving the efficiency of security checking by discovering
syntactic heuristics.

25 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Lin, H. and Lynch, C. (2020).
Local xor unification: Definitions, algorithms and
application to cryptography.
IACR Cryptol. ePrint Arch., 2020:929.

Lin, H., Lynch, C., Marshall, A. M., Meadows, C. A.,
Narendran, P., Ravishankar, V., and Rozek, B. (2021).
Algorithmic problems in the symbolic approach to the
verification of automatically synthesized cryptosystems.
In Konev, B. and Reger, G., editors, Frontiers of
Combining Systems - 13th International Symposium,
FroCoS 2021, Birmingham, UK, September 8-10, 2021,
Proceedings, volume 12941 of Lecture Notes in Computer
Science, pages 253–270. Springer.

Meadows, C. (2021).
Moving the bar on computationally sound exclusive-or.
In Bertino, E., Shulman, H., and Waidner, M., editors,
Computer Security – ESORICS 2021, pages 275–295,
Cham. Springer International Publishing.

26 / 26

CryptoSolve

Rozek et al.

Symbolic
Security

Symbolic
Techniques

Synthesize
Cryptosystems

References

Questions?

Thank you!

Check out our project’s homepage to install and run our tool:
https://symcollab.github.io/CryptoSolve/

26 / 26

https://symcollab.github.io/CryptoSolve/

	Symbolic Security
	Symbolic Techniques
	Synthesize Cryptosystems
	References

