
Measures of similarity  
To identify clusters of observations we need to know how close individuals are to each other or how far
apart they are.

Two individuals are 'close' when their dissimilarity of distance is small and their similarity large.

Special attention will be paid to proximity measures suitable for data consisting of repeated measures of
the same variable, for example taken at different time points.

Similarity Measures for Categorical Data  

Measures are generally scaled to be in the interval , although occasionally they are expressed as
percentages in the range 

Similarity value of unity indicates that both observations have identical values for all variables

Similarity value of zero indicates that the two individuals differ maximally for all variables.

Similarity Measures for Binary Data  

An extensive list of similarity measures for binary data exist, the reason for such is that a large number of
possible measures has to do with the apparent uncertainty as to how to deal with the count of zero-zero
matches

In some cases, zero-zero matches are equivalent to one-one matches and therefore should be included in
the calculated similarity measure

Example: Gender, where there is no preference as to which of the two categories should be coded as zero
or one

In other cases the inclusion or otherwise of the matches is more problematic

Example: When the zero category corresponds to the genuine absence of some property, such as wings in a
study of insects

The question that then needs to be asked is do the co-absences contain useful information about the
similarity of the two objects?

Attributing a high degree of similarity to a pair of individuals simply because they both lack a large number
of attributes may not be sensible in many situations

The following table below will help when it comes to interpreting the measures
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Measure that ignore the co-absence (lack of both objects having a zero) are Jaccard's Coefficient (S2), Sneath
and Sokal (S4)

When co-absences are considered informative, the simple matching coefficient (S1) is usually employed.

Measures S3 and S5 are further examples of symmetric coefficients that treat positive matches (a) and
negative matches (d) in the same way.

Similarity Measures for Categorical Data with More Than Two 
Levels

 

Categorical data where the variables have more than two levels (for example, eye color) could be dealt with
in a similar way to binary data, with each level of a variable being regarded as a single binary variable.

This is not an attractive approach, however, simply because of the large number of ‘negative’ matches which
will inevitably be involved.

A superior method is to allocate a score of zero or one to each variable depending on whether the two
observations are the same on that variable. These scores are then averaged over all p variables to give the
required similarity coefficient as

Dissimilarity and Distance Measures for Continuous Data  

A metric on a set  is a distance function

where  is the set of non-negative real numbers and for all , the following conditions are
satisfied

1.  non-negativity or separation axiom

1.     identity of indiscernibles

2.  symmetry

3.  subadditivity or triangle inequality

Conditions 1 and 2 define a positive-definite function
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All distance measures are formulated so as to allow for differential weighting of the quantitative variables 
 denotes the nonnegative weights of  variables

Proposed dissimilarity measures can be broadly divided into distance measures and correlation-type
measures.

Distance Measures  

 Space  

The Minkowski distance is a metric in normed vector space which can be considered as a generalization of
both the Euclidean distance and the Manhattan distance

This is a metric for 

Manhattan Distance  

This is the case in the Minkowski distance when 
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Manhattan distance depends on the rotation of the coordinate system, but does not depend on its
reflection about a coordinate axis or its translation

Shortest paths are not unique in this metric

Euclidean Distance  

This is the case in the Minkowski distance when . The Euclidean distance between points X and Y is the
length of the line segment connection them.

There is a unique path in which it has the shortest distance. This distance metric is also translation and
rotation invariant

Squared Euclidean Distance  

The standard Euclidean distance can be squared in order to place progressively greater weight on objects
that are farther apart. In this case, the equation becomes

Squared Euclidean Distance is not a metric as it does not satisfy the triangle inequality, however, it is
frequently used in optimization problems in which distances only have to be compared.

Chebyshev Distance  

The Chebyshev distance is where the distance between two vectors is the greatest of their differences along
any coordinate dimension.

It is also known as chessboard distance, since in the game of chess the minimum number of moves
needed by a king to go from one square on a chessboard to another equals the Chebyshev distance

Chebyshev distance is translation invariant

Canberra Distance Measure  

The Canberra distance (D4) is a weighted version of the  Manhattan distance. This measure is very
sensitive to small changes close to .
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It is often regarded as a generalization of the dissimilarity measure for binary data. In this context the
measure can be divided by the number of variables, , to ensure a dissimilarity coefficient in the interval 

It can then be shown that this measure for binary variables is just one minus the matching coefficient.

Correlation Measures  

It has often been suggested that the correlation between two observations can be used to quantify the
similarity between them.

Since for correlation coefficients we have that  with the value ‘1’ reflecting the strongest
possible positive relationship and the value ‘-1’ the strongest possible negative relationship, these
coefficients can be transformed into dissimilarities, , within the interval 

The use of correlation coefficients in this context is far more contentious than its noncontroversial role in
assessing the linear relationship between two variables based on  observations.

When correlations between two individuals are used to quantify their similarity the rows of the data matrix
are standardized, not its columns.

Disadvantages

When variables are measured on different scales the notion of a difference between variable values and
consequently that of a mean variable value or a variance is meaningless.

In addition, the correlation coefficient is unable to measure the difference in size between two observations.

Advantages

However, the use of a correlation coefficient can be justified for situations where all of the variables have
been measured on the same scale and precise values taken are important only to the extent that they
provide information about the subject's relative profile

Example: In classifying animals or plants, the absolute size of the organisms or their parts are often less
important than their shapes. In such studies the investigator requires a dissimilarity coefficient that takes
the value zero if and only if two individuals' profiles are multiples of each other. The angular separation
dissimilarity measure has this property.

Further considerations

The Pearson correlation is sensitive to outliers. This has prompted a number of suggestions for modifying
correlation coefficients when used as similarity measures; for example, robust versions of correlation
coefficients such as jackknife correlation or altogether more general association coefficients such as mutual
information distance measure

Mahalanobis (Maximum) Distance [Not between 2 observations]  

Mahalanobis distance is a measure of distance between a point P and a distribution D. It is a multi-
dimensional generalization of the idea of measuring how many standard deviations away P is from the
mean of D

Mahalanobis distance is unitless and scale-invariant and takes into account the correlations of the data set
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Where  is a set of mean observations and  is the covariance matrix

If the covariance matrix is diagonal then the resulting distance measure is called a normalized Euclidean
distance.

Where  is the standard deviation of the  and  over the sample set

Discrete Metric  

This metric describes whether or not two observations are equivalent

Similarity Measures for Data Containing both Continuous 
and Categorical Variables

 

There are a number of approaches to constructing proximities for mixed-mode data, that is, data in which
some variables are continuous and some categorical.

1. Dichotomize all variables and use a similarity measure for binary data
2. Rescale all the variables so that they are on the same scale by replacing variable values by their ranks 

among the objects and then using a measure for continuous data
3. Construct a dissimilarity measure for each type of variable and combine these, either with or without 

differential weighting into a single coefficient.

Most general-purpose statistical software implement a number of measurs for converting two-mode data
matrix into a one-mode dissimilarity matrix.

R has cluster , clusterSim , or proxy

Proximity Measures for Structured Data  

We'll be looking at data that consists of repeated measures of the same outcome variable but under
different conditions.

The simplest and perhaps most commonly used approach to exploiting the reference variable is in the
construction of a reduced set of relevant summaries per object which are then used as the basis for
defining object similarity.

Here we will look at some approaches for choosing summary measures and resulting proximity measures
for the most frequently encountered reference vectors (e.g. time, experimental condition, and underlying
factor)

Structured data arise when the variables can be assumed to follow a known factor model. Under
confirmatory factor analysis model each variable or item can be allocated to one of a set of underlying factors
or concepts. The factors cannot be observed directly but are 'indicated' by a number of items that are all
measured on the same scale.
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Note that the summary approach, while typically used with continuous variables, is not limited to variables
on an interval scale. The same principles can be applied to dealing with categorical data. The difference is
that summary measures now need to capture relevant aspects of the distribution of categorical variables
over repeated measures.

Rows of  which represent ordered lists of elements, that is all the variables provide a categorical outcome
and these variables can be aligned in one dimension, are more generally referred to as sequences. Sequence
analysis is an area of research that centers on problems of events and actions in their temporal context and
includes the measurements of similarities between sequences.

The most popular measure of dissimilarity between two sequences is the Levenhstein distance and counts
the minimum number of operations needed to transform one sequence of categories into another, where
an operation is an insertion, a deletion, or a substitution of a single category. Each operation may be
assigned a penalty weight (a typical choice would be to give double the penalty to a substitution as opposed
to an insertion or deletion. The measure is sometimes called the 'edit distance' due to its application in spell
checkers.

Optimal matching algorithms (OMAs) need to be employed to find the minimum number of operations
required to match one sequence to another. One such algorithm for aligning sequences is the Needleman-
Wunsch algorithm, which is commonly used in bioinformatics to align proteins.

The Jary similarity measure is a related measure of similarity between sequences of categories often used to
delete duplicates in the area of record linkage.

Inter-group Proximity Measures  

In clustering applications, it becomes necessary to consider how to measure the proximity between groups
of individuals.

1. The proximity between two groups might be defined by a suitable summary of the proximities between 
individuals from either group

2. Each group might be described by a representative observation by choosing a suitable summary 
statistic for each variable, and the inter group proximity defined as the proximity between the 
representative observations.

Inter-group Proximity Derived from the Proximity Matrix  

For deriving inter-group proximities from a matrix of inter-individual proximities, there are a variety of
possibilities

Take the smallest dissimilarity between any two individuals, one from each group. This is referred to as 
nearest-neighbor distance and is the basis of the clustering technique known as single linkage
Define hte intergroup distance as the largest distance between any two individuals, one from each 
group. This is known as the furthest-neighbour distance and constitute the basis of complete linkage 
cluster method.
Define as the average dissimiliarity between individuals from both groups. Such a measure is used in 
group average clustering

Inter-group Proximity Based on Group Summaries for Continuous 
Data
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One method for constructing inter-group dissimilarity measures for continuous data is to simply substitute
group means (also known as the centroid) for the variable values in the formulae for inter-individual
measures

More appropriate, however, might be measures which incorporate in one way or another, knowledge of
within-group variation. One possibility is to use Mahallanobis's generalized distance.

Mahalanobis (Maximum) Distance  

Mahalanobis distance is a measure of distance between a point P and a distribution D. It is a multi-
dimensional generalization of the idea of measuring how many standard deviations away P is from the
mean of D

Mahalanobis distance is unitless and scale-invariant and takes into account the correlations of the data set

Where  is a set of mean observations and  is the covariance matrix

If the covariance matrix is diagonal then the resulting distance measure is called a normalized Euclidean
distance.

Where  is the standard deviation of the  and  over the sample set

Thus, the Mahalanobis distance incraeses with increasing distances between the two group centers and
with decreasing within-group variation.

By also employing within-group correlations, the Mahalanobis distance takes account the possibly non-
spherical shapes of the groups.

The use of Mahalanobis implies that the investigator is willing to assume that the covariance matrices are at
least approximately the same in the two groups. When this is not so, this measure is an inappropriate inter-
group measure. Other alternatives exist such as the one proposed by Anderson and Bahadur

Another alternative is the normal information radius suggested by Jardine and Sibson

Inter-group Proximity Based on Group Summaries for Categorical 
Data

 

Approaches for measuring inter-group dissimilarities between groups of individuals for which categorical
variables have been observed have been considered by a number of authors. Balakrishnan and Sanghvi
(1968), for example, proposed a dissimilarity index of the form
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where  and  are the proportions of the lth category of the kth variable in group A and B respectively,
, ck + 1 is the number of categories for the kth variable and p is the number of

variables.

Kurczynski (1969) suggested adapting the generalized Mahalanobis distance, with categorical variables
replacing quantitative variables. In its most general form, this measure for inter-group distance is given by

where  contains

sample proportions in group A and  is defined in a similar manner, and  is the m × m common sample
covariance matrix, where .

Weighting Variables  

To weight a variable means to give it greater or lesser importance than other variables in determining the
proximity between two objects.

The question is 'How should the weights be chosen?' Before we discuss this question, it is important to
realize that the selection of variables for inclusion into the study already presents a form of weighting, since
the variables not included are effectively being given the weight .

The weights chosen for the variables reflect the importance that the investigator assigns the variables for
the classification task.

There are several approaches to this

Authors obtain perceived dissimilarities between selected objects, they then model the dissimilarities
using the underlying variables and weights that indicate their relative importance. The weights that
best fit the perceived dissimilarities are then chosen.

Define the weights to be inversely proportion to some measure of variability in this variable. This
choice of weights implies that the importance of a variable decreases when its variability increases.

For a continous variable, the most commonly emplyed weight is either the reciprocal of its 
standard deviation or the reciprocal of its range
Employing variability weights is equivalent to what is commonly referred to as standardizing the 
variables.

Construct weights from the data matrix using variable section. In essence, such procedures proceed in
an iterative fashion to identify variables which, when contributing to a cluster algorithm, lead to
internally cohesive and externally isolated clusters and, when clustered singly, produce reasonable
agreement.

The second approach assumed the importance of a variable to be inversely proportional to the total
variability of that variable. The total variability of a variable comprises variation both within and between
groups which may exist within the set of individuals. The aim of cluster analysis is typically to identify such
groups. Hence it can be argued that the importance of a variable should not be reduced because of
between-group variation (on the contrary, one might wish to assign more importance to a variable that
shows larger between-group variation.)
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Gnanadesikan et al. (1995) assessed the ability of squared distance functions based on data-determined
weights, both those described above and others, to recover groups in eight simulated and real continuous
data sets in a subsequent cluster analysis. Their main findings were:

1. Equal weights, (total) standard deviation weights, and range weights were generally ineffective, but 
range weights were preferable to standard deviation weights.

2. Weighting based on estimates of within-cluster variability worked well overall.
3. Weighting aimed at emphasizing variables with the most potential for identifying clusters did enhance 

clustering when some variables had a strong cluster structure.
4. Weighting to optimize the fitting of a hierarchical tree was often even less effective than equal 

weighting or weighting based on (total) standard deviations.
5. Forward variable selection was often among the better performers. (Note that all-subsets variable 

selection was not assessed at the time.)

Standardization  

In many clustering applications, the variables describing the objects to be clustered will not be measured in
the same units. A number of variability measures have been used for this purpose

When standard deviations calculated from the complete set of objects to be clustered are used, the 
technique is often referred to as auto-scaling, standard scoring, or z-scoring. 
Division by the median absolute deviations or by the ranges.

The second is shown to outperform auto-scaling in many clustering applications. As pointed out in the
previous section, standardization of variables to unit variance can be viewed as a special case of weighting.

Choice of Proximity Measure  

Firstly, the nature of the data should strongly influence the choice of the proximity measure.

Next, the choice of measure should depend on the scale of the data. Similarity coefficients should be used
when the data is binary. For continuous data, distance of correlation-type dissimilarity measure should be
used according to whether 'size' or 'shape' of the objects is of interest.

Finally, the clustering method to be used might have some implications for the choice of the coefficient. For
example, making a choice between several proximity coefficients with similar properties which are also
known to be monotonically related can be avoided by employing a cluster method that depends only on the
ranking of the proximities, not their absolute values.
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