# Lecture Notes for Cluster Analysis [Lecture 1: Measures of Similarity](lec1) [Lecture 2.1: Distance Measures Reasoning](lec2-1) [Lecture 2.2: Principle Component Analysis Pt. 1](lec2-2) Lecture 3: Discussion of Dataset [Lecture 4: Principal Component Analysis Pt. 2](lec4) [Lecture 4.2: Revisiting Measures](lec4-2) [Lecture 4.3: Cluster Tendency](lec4-3) [Lecture 5: Introduction to Connectivity Based Models](lec5) [Lecture 6: Agglomerative Methods](lec6) [Lecture 7: Divisive Methods Part 1: Monothetic](lec7) [Lecture 8: Divisive Methods Part 2: Polythetic](lec8) [Lecture 9.1: CURE and TSNE](lec9-1) [Lecture 9.2: Cluster Validation Part I](lec9-2) [Lecture 10.1: Silhouette Coefficient](lec10-1) [Lecture 10.2: Centroid-Based Clustering](lec10-2) [Lecture 10.3: Voronoi Diagrams](lec10-3) [Lecture 11.1: K-means++](lec11-1) [Lecture 11.2: K-medoids](lec11-2) [Lecture 11.3: K-medians](lec11-3) [Lecture 12: Introduction to Density Based Clustering](lec12)