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Preface

This volume collects contributions presented at the 34th International Workshop on Uni-
fication (UNIF 2020), held on June 29, 2020. It was a part of “Paris Nord Summer of LoVe
2020”, a joint event on LOgic and VErification at Université Paris 13, made of IJCAR 2020,
FSCD 2020, Petri Nets 2020, and over 20 satellite workshops. Due to COVID-19 pandemic, all
these events, including UNIF 2020, were held online.

Unification is concerned with the problem of identifying terms, finding solutions for equa-
tions, or making formulas equivalent. It is a fundamental process used in a number of fields of
computer science, including automated reasoning, term rewriting, logic programming, natural
language processing, program analysis, types, etc.

UNIF is a well-established event with more than three decades of history. It is a yearly
forum, where researchers in unification theory and related fields meet old and new colleagues,
present recent (even unfinished) work, and discuss new ideas and trends. It is also a good
opportunity for young researchers and scientists working in related areas to get an overview of
the current state of the art in unification theory.

The UNIF 2020 Program Committee selected 11 contributions. Each paper was reviewed by
at least three reviewers. In addition, the program included two invited talks given by Stéphanie
Delaune on Rewriting in Protocol Verification and by Manfred Schmidt-Schauß on Nominal
Algorithms: Applications and Extensions.

Many people helped to make UNIF 2020 a successful event. We would like to thank the
Conference Chairs of FSCD and IJCAR: Stefano Guerrini and Kaustuv Chaudhuri, the FSCD/
IJCAR Workshops Chairs Giulio Manzonetto and Andrew Reynolds, and the UNIF Steering
Committee for their support in the preparation of the workshop. The work of the Program
Committee was greatly helped by Andrei Voronkov’s EasyChair system.

Temur Kutsia
June 2020 Andrew M. Marshall
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Rewriting in Protocol Verification

Stéphanie Delaune

University of Rennes, CNRS, IRISA
Stephanie.Delaune@irisa.fr

Abstract

In this talk, we will review some results and techniques that allow automatic analysis of
security protocols. The focus will be on privacy-type security properties (e.g. anonymity,
unlinkability, ...) which are usually expressed using a notion of equivalence, and are actually
more difficult to analyse than secrecy and authentication properties. In particular, we will
discuss some advances that have been done in protocol verification thanks to techniques
originally developed for rewriting and unification theory.

1:1



Nominal Algorithms: Applications and Extensions

Manfred Schmidt-Schauß

Deot. Computer Science and Mathematics,
Goethe-university Frankfurt, Germany

schauss@ki.informatik.uni-frankfurt.de

Abstract

Nominal unification was introduced by Urban, Pitts, and Gabbay [8]. It turned out
to be a smart abstraction which nicely supports reasoning in higher-order languages: It
is more powerful than first-order unification and has far better computational properties
than higher-order unification. In particular, reasoning on correctness and influence on
resource-usage of program transformations can be supported, since overlaps of transfor-
mation and of reductions rules of the operational semantics can be computed by nominal
unification. Nominal matching, nominal rewriting and solving nominal constraints support
the reasoning on transformation and reduction sequences.

However, for a wider application to more expressive higher-order languages, the algo-
rithms have to be adapted to language extensions like recursive let or name restrictions as
in pi-calculus. There are further extensions: atom-variables to improve the computational
coverage, environment-variables to abstract sets of (recursive) bindings, and context vari-
ables to abstract positions within expressions. I will motivate and sketch the approaches
to algorithms adapted for these extensions, and justify some restrictions or modifications
to enable good computational properties of the nominal algorithms, in particular unifica-
tion and matching. Selected work on extensions is discussed and potential future work is
sketched.

1 Introduction: Classical Nominal Unification

1.1 Classical nominal unification

The work in [8] presents an algorithm to unify abstract expressions for a ground language defined
by e ::= a | λa.e | f(a1, . . . , an) where a represents atoms (i.e. names), e the expressions, λ
is the usual lambda abstraction, and f(a1, . . . , an) permits to form terms, where application
(e e) can be represented using a binary function symbol. The abstract language also has
unification variables (or expression variables X), where expressions can be substituted. The
language for solutions has in addition permutations of ground atoms, and two extra terms in the
grammar for e: X, and π·e. A solution usually consists of a substitution and a set of constraints
a#e. Nominal unification solves equations w.r.t. α-equivalence on the ground language. The
introduction of permutations is, however, not only technical, but really adds to the power of the
method. The main reason is that e1 ∼α e2 ⇔ π·e1 ∼α π·e2, and that argueing on permutations
is smoother than argueing on renamings. Nominal unification in its basic form is unitary and
a polynomial (i.e.quadratic) algrithm is known for computing a unifier as well as for deciding
nominal unifiability [8, 4, 1].

2 Extension by Atom Variables

The first extension which I want to mention is the addition of atom variables in nominal unifica-
tion. This is discussed already in [8, 9] where an alleged counter argument is that the inclusion

2:1
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of atom variables leads to equations like: (A B) ·C .
= C, which has two incomparable solutions:

1. A = B; 2. A#B,A#C,B#C

A remedy to regain flexibility in using names is in [2, 3] where equivariance of relations are
proposed, which permit arbitrary global atom permutations.

However, equivariance cannot express “a = b ∨ a 6= b”, i.e. it is restricted to permuting
names, whereas our proposal is to use atom-variables, which can also express solutions σ for
atom variables A,B, where σ(A) = σ(B) may be a valid as well as σ(A) 6= σ(B).

The two incomparable solutions of (A B)·C .
= C are 1. A = B, and 2. {A#B,A#C,B#C},

which can be represented by one solution using atom-variables using a single freshness con-
straint: C#λ(A B)C.C [7].

Hence the general idea in using atom-variables is to keep the unique solutions property, and
to put the alternatives into the constraint system. This is successfully worked out in [7] for a
nominal unification algorithm.

An essential rule in the nominal unification algorithm in [8, 9] is the decomposition rule for
lambda-expression:

λa.X
.
= λb.Y

{a#Y }, X .
= (a b) · Y

where our proposal with atom-variables is the rule:

λA.X
.
= λB.Y

{A#λB.Y }, X .
= (A B) · Y

The results in [7] for an appropriately designed unification algorithm are:

• Nominal unification with atom-variables is unitary.

• Its complexity is polynomial, where sharing has to be used for representing permutations.

• Solvability is NP-complete. The reason is that the constraints of an outputted solution
may represent an empty set of ground solutions, and that this satisfiability problem is
NP-complete.

As a summary:

• Profit: Polynomial time computation of a single unifier, and increased flexibility in choos-
ing names.

• Costs: nested permutations, which in general can not be simplified, for example
((A B)·C (A C)·B)) which requires a sharing structure for permutations;
and an NP-hard decision problem.

3 Application in Reasoning on Programming Languages

One motivation for studying nominal algorithms are higher-order equational theories where a
decision algorithm for equations modulo the equational theory and modulo α-equivalence is of
use. Therefore Higher-Order Rewriting is of interest and also decidable and efficient algorithms
for Nominal Unification, Nominal Matching, Nominal Rewriting, and Nominal Constraint Solv-
ing, such that a Nominal Knuth Bendix confluence check can be proved correct and then applied

The main motivation for us is correctness (w.r.t. semantics) of transformations in higher-
order programming languages.

2:2
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As a starting point the setting is: a declarative higher-order programming language and
its operational semantics as a set of small-step rules. Examples of typical rules are (in a core
variant of Haskell):

R[(λx.s1) s2] → R[(letr x = s2 in s1)]
R[(letr E1 in (letr E2 in s))] → R[letr E1, E2 in s]
R[(letr x = (letr E2 in s2), E1 in s1)] → R[letr x = s2, E2, E1 in s1]

where R is a reduction context, and E1, E2 are any sub-environments.
Some typical transformations are
(λx.e1) e2 → (letr x = e2 in e1)
(letr E1 in (letr E2 in e)) → (letr E1, E2 in e)
(letr E1 in e1) (letr E2 in e2) → (letr E1, E2 in (e1 e2))

The correctness of transformations requires the following proof tasks: if e1
trans−−−→ e2, then

e1↓ ⇐⇒ e2↓, where e↓ means that there is a reduction sequence from e to a value, using the
operational semantics. Note that the operational small-step semantics is usually equivalent to
nominal rewriting of expressions by reduction rules, but in general without constraints.

e1 e ′
1

e2 e ′
2

. . .

ei (value)

. . .

e′j (value)

redi

redj

trans

trans,*

red,*
Necessary subtasks:
Computation of overlap possibilities by nominal unification;
Computation of the corresponding joins also using nominal
matching and rewriting.
Proof Goal: Show that e1↓ if and only if e′1↓.
Induction arguments by nominal rewriting,

nominal matching and nominal constraint solving
and the computed join patterns.

An example for correctness of transformations is the reduction and transformation rule (cp).

let x = v in C[x] → let x = v in C[v]

where C is any context, even with binders, C does not bind x, and v is a value (abstraction,
data).

In a core-language formulation of Haskell with recursive let, the rule (cp) is as follows:

letr x = v,E in C[x] → letr x = v,E in C[v]

where C is any context, even with binders, and C does not bind x; E is a set of bindings
(environment); and v is a value (abstraction, data).

The requirement is to adapt nominal algorithms to further syntactic constructs: Let-
constructs: recursive let: letr, and name-binder ν. context-variables C, environment variables
E, and the full treatment requires that also generalized constraints are used.

Currently it is unknown how to combine all these generalizations in one setting. So first
the extensions are checked one-by-one: letr (recursive let as in Haskell); context-variables C,
environment variables E, and perhaps more.

4 Extension By Recursive Let

First investigation: letr, but no atom variables [5].

2:3
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The language extension is . . . | (letr a1.e1, . . . , an.en in e), where the scope of ai is in every
ej and e. Syntactically, (letr a1.e1, . . . , an.en in e) is considered as the same as (letr env in e)
where env is a permutation of (a1.e1, . . . , an.en)

The following extra problems have to be tackled: A unification rule decomposing an equation
between two letr-expressions, and fixpoint equations X = π·X, which have trivial solutions in
classic nominal unification.

An extra unification rule for decomposing letr is:

Γ ·∪{letr a1.s1; . . . , an.sn in r
.
= letr b1.t1; . . . , bn.tn in r′}

|
∀ρ

Γ ·∪flat(λa1. . . . an.(s1, . . . , sn, r)
.
= λbρ(1). . . . bρ(n).(tρ(1), . . . , tρ(n), r

′))

where ρ is guessed as a per-
mutation on {1, . . . , n}

Notice that {a1, . . . , an} ∩ {b1, . . . , bn} maybe nonempty. This rule is the only non-
deterministic one in this setting. The equality defined by permuting environments has as
consequence that there are nontrivial expressions as fixpoints of (atom-)permutations. For
usual nominal unification: (a b)·e ∼ e implies a, b not free in e! In the language with recursive
let: a, b may be free in e:

(a b) · (letr c.a; d.b in True) = (letr c.b; d.a in True) ∼ (letr c.a; d.b in True).

The observation is that there are expressions t in the letrec-language with t ∼ (a b) · t where
{a, b} are free atoms in t. The consequence for the unification algorithm is that substitutions
together with freshness constraints are insufficient to represent solutions.

Other central rules for letrec nominal unification are:

(MMS)
Γ ·∪{X .

= e1, X
.
= e2},∇

Γ ·∪{X .
= e1, e1

.
= e2},∇

if e1, e2 are neither variables nor suspensions.

(FPS)
Γ ·∪{X .

= π1·X, . . . ,X .
= πn·X,X .

= e}, θ
Γ ·∪{e .

= π1·e, . . . , e .
= πn·e}, θ ∪ {X 7→ e}

if X is maximal w.r.t. >vd, X 6∈ Var(Γ), and e
is neither a variable nor a suspension, and no
failure rule is applicable.

(ElimFP)

Γ ·∪{X .
= π1·X, . . . ,X .

= πn·X,X .
= π·X}, θ

Γ ·∪{X .
= π1·X, . . . ,X .

= πn·X}, θ
if π ∈ 〈π1, . . . , πn〉., i.e. π is in the sub-
group generated by π1, . . . .πn.

(Output)

Γ,∇, θ
θ,∇, {“X ∈ Fix (π)“ | X .

= π ·X ∈ Γ} if Γ only consists of fixpoint-equations.

ElimFP removes redundant fixpoint-equations if π is in the generated subgroup 〈π1, . . . , πn〉.
Finally, the minimized fixpoint equations are parts of the result. The extra techniques for
efficiency for nominal unification in the letrec-language are: Using flattened expressions, and
priorities to control application of MMS and FPS, Compressed (i.e. shared) representation of
the output substitution, avoiding redundant fixpoint equations by (ElimFP) exploiting efficient
(i.e. polynomial) algorithms in permutation groups to minimize the set of generators of a
permutation group.

The results for letrec nominal unification are:

Theorem 4.1. Nominal unifiability of letrec-expressions together with freshness constraints is
NP-complete.

The number of most general solutions is at most exponential, and the size of a single one is
polynomial.

We also generalized the letrec-nominal unification algorithm to permit atom variables with
similar results, yet unpublished.
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5 Extension By Context Variables

We report on research extending nominal unification for input equations containing atom-
variables and context-variables [6]. The input of the algorithm NomUnifyASD is (Γ,∇): equa-
tions Γ and freshness and DVC-constraints ∇, where the latter intend to enforce that the vari-
able condition holds: that bound variables are different and also different from free variables.
This condition is justified for higher-order PL, since the semantics is modulo α-equivalence. A
DVC-constraint dvc(e) is solved by ρ, iff in eρ all bound variables are distinct and distinct
from free variables where ρ uses fresh names for bound variables in every instantiation xρ.

An extra condition is that for every input equation e1
.
= e2, the constraints dvc(e1),dvc(e2)

must hold, resp., are in the input constraints.
The justification for higher-order programming languages is that (i) semantic properties are
modulo α-equivalence, (ii) for expressions it is always legal to rename them such that the vari-
able condition holds. For example: after beta-reduction, the result is usually renamed such
that the variable condition holds.

The nominal unification algorithm NomUnifyASD requires as additional constraint
that every context variable occurs at most once. As a justification, most all left-and right-hand
sides of rules and transformations are linear in context variables.

The variable condition is required for the context decomposition lemma in the ground lan-
guage: Let C1, C2 be (ground) contexts with the same hole positions, and dvc[C1[e1]] and
dvc[C2[e2]] holds. Then

C1[e1] ∼α C2[e2]
⇐⇒

∃ permutation π with C1 ∼α π·C2 and e1 ∼α π·e2,

( plus some conditions on dom(π) )
The consequences for the unification algorithm are that this enables systematic solutions of

D1[e1]
.
= D2[e2], however, the unification rule introduces permutation variables.

Theorem 5.1. (Main Result for NomUnifyASD) NomUnifyASD is sound and complete for
ASD1 unification problems and runs in NEXPTIME.

The collecting version returns an at most exponential set of polynomial-sized unifiers.

6 Final Remarks

To apply nominal algorithms future research maybe to construct algorithms for the combined
extensions, such that proofs of correctness and other properties of translations can be supported
by automated techniques. However, our conjecture is that the most general case is undecidable,
hence restrictions like linearity appear justified.
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Abstract
We consider nominal equational problems of the form ∃W∀Y : P , where P consists of

conjunctions and disjunctions of equations of the form s ≈α t (read: “s is α-equivalent to
t”), freshness constraints of the form a#t (read: “a is fresh for t”) and their negations:
s 6≈α t and a #t, where a is an atom and s, t are nominal terms. When dealing with general
nominal equational problems we face the challenge of properly defining their semantics to
take into account the interaction between negative freshness constraints and the existential
and universal quantifiers. Here we propose a discussion regarding two different approaches:
(i) adopting the usual freshness and equational contraints; (ii) the use of the “new” quantifier
( N) and fixed point equations instead of freshness constraints; in both cases being careful
to obtain the correct meaning.

1 Introduction
Disunification problems have been extended to the nominal setting [2], using a restricted form
of constraints called nominal (disunification) constraints: equations (judgments ∆ ` s ≈α? t)
enriched with disequations, i.e., negated equations of the form s 6≈α? t. In that setting, a
nominal constraint problem P is equivalent to the existentially closed formula:

P := ∃X
((∧

∆i ` si ≈α ti
)
∧
(∧
∇j ` pj 6≈α qj

))
.

This problem is solved in the nominal term-algebra T (Σ,A,X) by constructing suitable
representation to the witnesses for the variables in P [2].

Comon and Lescanne [6] investigated the so-called equational problem, in their words: “an
equational problem is any first-order formula whose only predicate symbol is =”, that is, it has
the form ∃w1, . . . , wn∀y1, . . . , ym : P where P is a system, i.e., an equation s = t, or a disequation
s 6= t, or a disjunction of systems

∨
Pi, or a conjunction of systems

∧
Pi, or a failure ⊥, or

success >. The motivation to study such problems was the applicability in pattern-matching for
functional languages, sufficient completeness for term rewriting systems, dealing with negation
in logic programming languages, etc.
∗The author is supported by the NWO TOP project “Implicit Complexity through Higher Order Rewriting”

(ICHOR), NWO 612.001.803/7571.
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On General Nominal Equational Problems Ayala-Rincón, Fernández, Nantes-Sobrinho, Vale

With the development of nominal techniques, including nominal logic [10], nominal unification
and rewriting [7], nominal logic programming [4], and nominal (universal) algebra [8], it is
natural to extend equational problems into the “nominal world” and consider nominal equational
problems. Based on Comon and Lescanne’s work, the expected form of a nominal extension to
the first-order equational problem would be

P ::= ∃W1 . . .Wn∀Y1 . . . Ym : P

with P being a nominal system, i.e., a formula consisting of conjunctions and disjunctions of
freshness, equality constraints, and their negations.

In this paper, we discuss alternative formulations of nominal equational problems taking
into account the kind of constraints used and the model on which they are interpreted. We
also discuss a preliminary rule based strategy to solve such problems. This work is a first step
towards the generalisation of nominal disunification constraint problems (introduced in [2])
which consist of equations and disequations without universally-quantified variables.

2 Background
We assume the reader is familiar with nominal techniques and recall some concepts and notations
that shall be used in the paper; for more details the reader is referred to [7, 11].

Fix countable infinite, pairwise disjoint, sets of atoms A = {a, b, c, . . .} and variables X =
{X,Y, Z, . . .}. Atoms follow the permutative convention, i.e., names a, b, and c run permutatively
over A, therefore they represent different names. As usual, we form nominal terms with a
finite set Σ of term-formers — disjoint from A and X — such that for each f ∈ Σ, a unique
non-negative integer n (the arity of f , written as f : n) is assigned.

A permutation π is a bijection A→ A with finite domain, i.e., the set supp(π) := {a ∈ A |
π(a) 6= a} is finite. Write id for the identity permutation and π ◦ π′ for the composition of π
and π′. The difference set of π and γ is defined by ds(π, γ) = {a ∈ A | π(a) 6= γ(a)}.

Nominal terms are given by the following grammar: s, t := a | π · X | [a]t | f(t1, . . . , tn)
where a is an atom, π ·X is a moderated variable, [a] t is the abstraction of a in the term t, and
f(t1, . . . , tn) is a function application with f ∈ Σ and f : n. We abbreviate a ordered sequence
t1, . . . , tn of terms by t̃.
Example 1. Let Σλ := {lam : 1, app : 2} be a signature for the λ-calculus. Using atoms to repre-
sent λ-calculus variables, λ-expressions are generated by the grammar: e := a |lam([a] e)|app(e, e).
As usual, we write app(s, t) as s t and lam([a] s) as λ [a] s. The following are examples of nominal
terms: (λ [a] a)X and (λ [a] (λ [b] b a) c) d.

The action of a permutation π on a term t is inductively defined by: π ·a = π(a), π ·(π′ ·X) =
(π ◦ π′) ·X, π · ([a]t) = [π(a)](π · t), and π · f(t1, . . . , tn) = f(π · t1, . . . , π · tn). Substitutions,
ranging over σ, γ, τ . . ., are maps (with finite domain) from variables to terms. The action of a
substitution σ on a term t, denoted tσ, is inductively defined by: aσ = a, (π ·X)σ = π · (Xσ),
([a]t)σ = [a](tσ) and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Note that t(σγ) = (tσ)γ.

Equality and Freshness Constraints A nominal equation (disequation) is the symbol >
(⊥) or an expression of the form s ≈α t (s 6≈α t) where s and t are nominal terms. A trivial
equation is either of the form s ≈α s or >. Similarly, a trivial disequation is either s 6≈α s or ⊥.

A finite set of primitive freshness constraints of the form a#X is called a freshness context,
we use ∆,∇, and Γ to denote them. Equality and freshness constraints are defined by the
derivation rules in Figure 1 below.
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(ax)∇ ` a ≈α a
∇ ` t1 ≈α t′1 · · · ∇ ` tn ≈α t′n (f)
∇ ` f(t1, . . . tn) ≈α f(t′1, . . . , t′n)

∇ ` t ≈α t′ (abs-a)
∇ ` [a]t ≈α [a]t′

∇ ` t ≈α (a a′) · t′ ∇ ` a#t′
(abs-b)

∇ ` [a]t ≈α [a′]t′
a#X ∈ ∇ for all a s.t. π · a 6= π′ · a

(var)
∇ ` π ·X ≈α π′ ·X

(#-ax)∇ ` a#b
(π−1 · a#X) ∈ ∇

(#-var)∇ ` a#π ·X
(#-abs-a)∇ ` a#[a]t

∇ ` a#t
(#-abs-b)∇ ` a# [b] t

∇ ` a#t1 · · · ∇ ` a#tn (#-f)∇ ` a#f(t1, . . . tn)

Figure 1: Equality and Freshness Rules

3 (NEP) Nominal Equational Problems
Definition 1. A nominal system P is a formula defined by the following grammar

P, P ′ ::= > | ⊥ | s ≈α t | s 6≈α t | a#t | a #t | P ∧ P ′ | P ∨ P ′.

Although not usual, the negation of freshness — denoted as a #X — means that a is not
fresh for X, that is, there exists an instance t = Xσ of X with at least one free occurrence of a.

Definition 2 (NEP-First Version). A NEP is a formula of the form

P ::= ∃W1 . . .Wn∀Y1 . . . Ym : P

where P is a nominal system and W = {W1, . . . ,Wn}, Y = {Y1, . . . , Ym}, are sets of mutually
distinct variables called respectivley auxiliary unknowns and parameters. fv(P) denotes the set
of free variables occurring in P also called principal unknowns.
Example 2 (Nominal Disunification Constraints). Nominal disunification constraints [2] have
the form P := ∃X〈E || D〉, where E is a finite set of nominal equations in context, i.e.,
E =

⋃
0≤i≤n{∆i ` si ≈α ti} and D is a finite set of nominal disequations in context, D =⋃

0≤j≤m{∇j ` uj 6≈α vj}. This problem is a particular case of NEP: if one takes the judgment
∆ ` s ≈α t as ∆⇒ s ≈α t, or yet as ¬∆ ∨ s ≈α t1, we obtain the following formula:

P := ∃X(
n∧

i=0

(¬[∆i] ∨ si ≈α ti)) ∧ (
m∧

j=0

(¬[∇j ] ∨ uj 6≈α vj)), (1)

where [∆i], [∇j ] are conjunctions of freshness constraints contained in ∆i, ∇j, respectively.

3.1 Solutions of Equational Problems
Let P = ∃W∀Y : P be a NEP. Let A be an algebra that provides an interpretation for the
symbols in the signature. An A-solution for P is a pair 〈Γ, σ〉, consisting of a freshness context
Γ and a substitution σ, such that 〈Γ, σ〉 A-validates the system P (as defined below). We will
assume that A is the nominal algebra of terms T (Σ,A,X), but one could use the ground algebra
T (Σ,A, ∅) or a quotient algebra, say T (Σ,A,X)/ =E for a given equational theory E.

1Similarly, for disequations
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Definition 3. Let C range over equality and freshness constraints and D range over negative
constraints (disequations and negated freshness). We denote by Cσ (resp. Dσ) the constraint
obtained by instantiating the terms in C (resp. D) with the substitution σ and by ¬D the positive
constraint obtained by negating D.

A pair 〈Γ, σ〉 A-validates a system P iff

1. P = >; or 2. P = C; Γ ` Cσ holds in A; or 3. P = D; Γ 6` ¬Dσ in A; or

4. P = P1 ∧ . . . ∧ Pn and 〈Γ, σ〉 A-validates each Pi, 1 ≤ i ≤ n; or

5. P = P1 ∨ . . . ∨ Pm and 〈Γ, σ〉 A-validates at least one Pi, 1 ≤ i ≤ m.

The definition of solution relies on a pair 〈Γ, γ〉 being away from a set of variables.

Definition 4. A pair 〈Γ, γ〉 of a freshness context and a substitution is away from a set of
variables V ⊂ X iff Γ does not contain any a#X with X ∈ V and γ is away from V, i.e., no
variable from V occurs in 〈Γ, γ〉.

Definition 5. A pair 〈Γ, γ〉 is an A-solution of the NEP P = ∃W∀Y : P if, and only if, the
following conditions hold:

1. 〈Γ, γ〉 is away from W ∪ Y and dom(γ) = X = fv(P);

2. there is a pair 〈∆, δ〉 away from Y ∪X (dom(δ) = W ) such that for all pairs 〈Λ, λ〉 away
from W ∪X (dom(λ) = Y ), 〈Γ∆Λ, γδλ〉 A-validates P .

3.2 Nominal Equational Solved Forms
The future goal is to develop a procedure to solve NEP based on applications of simplification
rules, as proposed in [6], that transform problems into simpler ones preserving the set of solutions.
Successive applications of such rules lead to a solved form from which we know how to extract
a solution from. We consider three first-order solved forms: parameterless, unification, and
definition with constraints. Below we extend those notions to the nominal setting.

Definition 6 (Solved Forms).

1. A NEP P is in unification solved form if it is equivalent to a nominal unification problem
of the form 〈Γ, X1 ≈α t1 ∧ . . .∧Xn ≈α tn〉 where all the unknowns X1, . . . , Xn are distinct
and do not occur in the ti’s and Γ is a freshness context;

2. A NEP P is in parameterless solved form if it contains no universal quantifiers.

3. A NEP is a definition with constraints if it is either >,⊥, or a problem of the form
P := ∃X(

∧n
i=0(¬[∆i]∨Xi ≈α ti))∧(

∧m
j=0(¬[∇j ]∨X ′j 6≈α vj)), where variables X1, . . . , Xn

occur only once in the equational part (left conjunction). Variables X ′j is different from vj ,
for 1,≤ j ≤ m. [∆i] and [∇j ] are defined as in Example 2.

It is essential to remark that as in [6] the definition with constraints solved form is equivalent
to the disunification problem introduced in [3], and its extension to the nominal setting is the
disunification constraints problem [2] described in Example 2. We discuss rules in the Appendix.
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3.3 Discussion: a strict equational approach to (NEP)
It is natural to try to define NEP as nominal formulas whose only predicate symbol is ≈α. For that,
we can explore existing results relating freshness and equality constraints. Initially, the freshness
predicate was defined using a quantified fixed point equation, in [11]: a#t iff Na′.(a a′) · t ≈ t.

In another work, a freshness constraint was shown to have a tight relation with a specific
equation between abstracted atoms:

Lemma 1 (Lemma 3.1 in [9]). P ∪ {a#?t} and P ∪ {[a][b]t ≈? [b][b]t} have the same solutions.

The above approaches motivate the following definition for NEP:

Definition 7 (NEP-Second Version). A NEP is a formula of the form

P ::= ∃W∀Y Na : P

where P is a system generated by the grammar P, P ′ ::= > | ⊥ | s ≈α t | s 6≈α t | P ∧P ′ | P ∨P ′,
and W = {W1, . . . ,Wn}, Y = {Y1, . . . , Ym}, and fv(P), as in Definition 2, are the auxiliary
unknowns, parameters and principal unknowns.

As shown in [1], solving equations via freshness constraints is equivalent to following the
approach via fixed point equations when the equational theory is empty. However, when dealing
with equational theories that include commutativity, it seems to be more convenient to use
a purely equational approach. Therefore, we conjecture that this second approach would be
more convenient when dealing quotient algebras, such as T (Σ,A,X)/ =C , or T (Σ,A,X)/ =AC ,
among others.

4 Conclusion
We have considered two approaches to define NEPs as a straightforward nominal version of the
problem introduced in [6, 5], using (negated) freshness constraints in addition to ≈α, or using
purely ≈α as predicate but with the “new” quantifier N. As future work we plan to investigate
which approach is more convenient when defining the rules for simplifying the NEPs in order to
obtain a correct procedure to solve such problems, besides we also intend to investigate NEPs
modulo equational theories.
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A Rule based procedure
In this section we present a preliminary set of simplification rules which will be used in the
algorithm for solving NEP. They are still under investigation and proofs of correctness and
termination are ongoing work.

Intuitively, a set of transformation rules transforms a problem P into a problem P ′ (denoted
as P =⇒ P ′), which are simpler in some sense. Transformation rules may have conditions
(rule controls) in order to be applied. The goal is to reach one of the normal forms defined
above. Different strategies can possible lead to different normal forms. Strategies can also vary
according to the model where the problem is being solved.

The primary control gives priority for application of rules: we split rules into sets Ri using
the index i as a priority stack, i.e., a rule R ∈ Ri can only be applied if no rules from Rj ,
with j < i can be applied. A procedure on a NEP P is a strategy R0, R1, . . . , Rk for application
of rules such that P = P0 =⇒R0 P1 =⇒R2 . . . =⇒Rk

Pk+1, where Ri ∈ Rj , for 0 ≤ i ≤ k
and some 0 ≤ j ≤ 6, satisfying the primary control give above. A problem P is rewritten in
a pattern-matching fashion, i.e, rules give the pattern occurring in the problem. Before the
application of each rule P is reduced to its conjunctive normal form.

The explosion rule creates a new problem for each f ∈ Σ. Given some explosion equation
(disequation), all possible constructions with f ∈ Σ must be considered for completeness’ sake.
Therefore, our procedure will build a finitely branching tree of problems to be solved.

Example 3. Let P be a NEP, using the signature from Example 1, as follows:
P = ∀Y : λ [a]X 6≈α λ [a]λ [a]Y dec=⇒ ∀Y : [a]X 6≈α [a]λ [a]Y abs=⇒ ∀Y : X 6≈α λ [a]Y
Notice that more rules can be applied and the explosion rule results in two parallel problems

P1 = ∃W1∀Y : X 6≈α λ [a]Y ∧X ≈α λW1 and P2 = ∃W1,W2∀Y : X 6≈α [a]Y ∧X = W1W2.

3:6



On General Nominal Equational Problems Ayala-Rincón, Fernández, Nantes-Sobrinho, Vale

R0 : Trivial Rules
(T1) t ≈α t =⇒ > (T2) t 6≈α t =⇒ ⊥ (T3) a ≈α b =⇒ ⊥ (T4) a#b =⇒ >
(T5) a#a =⇒ ⊥ (T6) a #a =⇒ > (T7) a #b =⇒ ⊥

R1: Clash and Occurrence Check Rules
(CL1) f(t̃) ≈α g(ũ) =⇒ ⊥ (CL2)f(t̃) 6≈α g(ũ) =⇒ > where f 6= g
(CL3) s 6≈α t =⇒ > (CL4) s ≈α t =⇒ ⊥ s|ε 6= t|ε and neither is a

moderated variable
(O1) Z ≈α t =⇒ ⊥ (O2) Z 6≈α t =⇒ > Z /∈ vars(t) and Z 6= t

R2: Elimination of parameters and auxiliary unknowns.

(C1) ∀Y , Y : P =⇒ ∀Y : P (C2) ∃W,W : P =⇒ ∃W : P (C3)∃W,W : W ≈α t ∧ P =⇒ ∃W : P

W /∈ vars(P, t) and Y /∈ vars(P ).

R3: Equality and freshness simplification
(E1) π ·X ≈α γ ·X =⇒ ∧ ds(π, γ)#X
(E2) [a] t ≈α [a]u =⇒ t ≈α u
(E3) [a] t ≈α [b]u =⇒ (b a) · t ≈α u ∧ b#t
(E4) f(t̃) ≈α f(ũ) =⇒ ∧i ti ≈α ui

(F1) a#π ·X =⇒ π−1(a)#X
(F2) a# [a] t =⇒ >
(F3) a# [b] t =⇒ a#t
(F4) a#f(t1, . . . , tn) =⇒ ∧ia#ti

R4: Instantiation Rules
(I1) Z ≈α t ∧ P =⇒ Z ≈α t ∧ P [Z/t], where Z /∈ vars(t) and Z is not a parameter.

(I2) π · Z ≈α t =⇒ Z ≈α π−1 · t (I3) π · Z 6≈α t =⇒ Z 6≈α π−1 · t, t is not a suspension.
R5: Simplification of Parameters

(U1) ∀Y , Y : P ∧ Y 6≈α t =⇒ ⊥
(U2) ∀Y : P ∧ (Y 6≈α t ∨Q) =⇒ ∀Y : P ∧Q[Y/t], if Y /∈ vars(t), Y ∈ Y
(U3) ∀Y , Y : P ∧ Y ≈α t =⇒ ⊥, if Y 6≡ t
(U4) ∀Y : P ∧ (Z1 ≈α t1 ∨ · · · ∨ Zn ≈α tn ∨Q) =⇒ ∀Y : P ∧Q
(U5) ∀Y , Y : P ∧ a#Y =⇒ ⊥
(U6) ∀Y , Y : P ∧ a #Y =⇒ ⊥

Conditions for (U4): (i) Zi is a variable and Zi 6≡ ti; (ii) each equation in the disjunction contains at
least one occurrence of a parameter; (iii) Q does not contain any parameter.

R6: Terms Disunification
(DC) f(t̃) 6≈α f(ũ) =⇒ ∨i ti 6≈α ui
(D1) π ·X 6≈α γ ·X =⇒ ∨i ds(π, γ) #X
(D2) [a] t 6≈α [a]u =⇒ t 6≈α u
(D3) [a] t 6≈α [b]u =⇒ (b a) · t 6≈α u ∨ b #t

(NF1) a #π ·X =⇒ π−1(a) #X
(NF2) a #[a] t =⇒ ⊥
(NF3) a #[b] t =⇒ a #t
(NF4) a #f(t̃) =⇒ ∨ia #ti

R7 : Explosion Rule

∃W∀Y : P =⇒ ∃W1, . . . ,Wn,W∀Y : P ∧X ≈α f(W1, . . . ,Wn)

Rule Conditions: (i) X is a free or existential variable occurring in P , W1, . . . ,Wn are newly chosen
auxiliary variables not occurring anywhere in the problem, and f ∈ Σ; (ii) there exists an equation

X = u (or disequation X 6≈α u) in P such that u is not a variable and contains at least one parameter;
(iii) no other rule can be applied.
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Successive application of rules gives:

P1
inst=⇒ ∃W1∀Y : λW1 6≈α λ [a]Y ∧X ≈α λW1
dec=⇒ ∃W1∀Y : W1 6≈α [a]Y ∧X ≈α λW1
expl=⇒ ∃W1W2∀Y : W1 6≈α [a]Y ∧X ≈α λW1 ∧W1 ≈α λW2
inst=⇒ ∃W1W2∀Y : λW2 6≈α [a]Y ∧X ≈α λW1 ∧W1 ≈α λW2
dis=⇒ ∃W1W2∀Y : X ≈α λW1 ∧W1 ≈α λW2

pl,inst
∗=⇒ ∃W1W2 : X ≈α λλW2 ∧W1 ≈α λW2.

Similarly, P2
∗=⇒ ∃W1,W2 : X = W1W2. Notice that from this point one reaches a parameter-

less normal form. Solutions to P can be easily obtained by instantiating W2 to any ground term
in P1 and W1,W2 to any term in P2 since X only needs to be instantiated to a term headed by
an application. It is easy to check that this choice indeed generates solutions for P.
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1 Introduction
The unification problem in a propositional logic is to determine, given a formula ϕ, whether there exists
a substitution σ such that σ(ϕ) is in that logic [1]. In that case, σ is a unifier of ϕ. When a unifiable
formula has minimal complete sets of unifiers, it is either infinitary, finitary, or unitary, depending on
the cardinality of its minimal complete sets of unifiers. Otherwise, it is nullary. Within the context
of elementary unification, it is known that Alt1 is nullary [8], S5 and S4.3 are unitary [10, 11, 12],
transitive modal logics like K4 and S4 are finitary [13, 15], KD45, K45 and K4.2+ are unitary [14, 16],
K is nullary [17] and K4D1 is unitary [18]. The unification types of the description logics EL and FL0

are known too: both of them are nullary [2, 3]. In this paper, we prove that in modal logic K + ��⊥
— the least normal modal logic containing the formula ��⊥— unifiable formulas are either unitary,
or finitary1.

2 Preliminaries
Let S be a finite set. We will write ‖S‖ for the cardinality of S. If S is non-empty then for all equivalence
relations ∼ on S and for all T⊆S, T/∼ will denote the quotient set of T modulo ∼.

Proposition 1. Let T be a finite set. If S is non-empty then for all equivalence relations ∼ on S,
‖S/∼‖≤‖T‖≤‖S‖ iff there exists a surjective function f from S to T such that for all α, β∈S, if
f(α)=f(β) then α∼β.

Proposition 1 will be used twice in the proof of Proposition 11.

3 Syntax
Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc). Let
(x1, x2, . . .) be an enumeration of VAR without repetitions. Let n≥1. The set FORn of all n-formulas
(with typical members denoted ϕ, ψ, etc) is inductively defined by:

• ϕ,ψ ::= xi | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ where i∈{1, . . . , n}.
We adopt the standard rules for omission of the parentheses. The connectives >, ∧, → and ↔ are
defined by the usual abbreviations. We have also a connective ♦ which is defined by ♦ϕ ::= ¬�¬ϕ.
For all ϕ∈FORn, we respectively write “ϕ0” and “ϕ1” to mean “¬ϕ” and “ϕ”. From now on,

1Acknowledgements: The preparation of this paper has been supported by Bulgarian Science Fund (Project
DN02/15/19.12.2016) and Université Paul Sabatier (Programme Professeurs invités 2018). We are indebted to Silvio Ghilardi for
his suggestion to consider the question of the unification type of K+ ��⊥.
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we write “L2” to mean “K +��⊥”.

Let ≡n be the equivalence relation on FORn defined by:

• ϕ≡nψ iff ϕ↔ ψ∈L2.

Proposition 2. ≡n possesses finitely many equivalence classes.

An n-substitution is a couple (k, σ) where k≥1 and σ is a homomorphism from FORn to FORk. Let
SUBn be the set of all n-substitutions. The equivalence relation 'n on SUBn is defined by:

• (k, σ)'n(l, τ) iff for all i∈{1, . . . , n}, σ(xi)↔ τ(xi)∈L2.

The preorder 4n on SUBn is defined by:

• (k, σ)4n(l, τ) iff there exists a k-substitution (m,υ) such that for all i∈{1, . . . , n}, υ(σ(xi))↔
τ(xi)∈L2.

4 Semantics
Let n≥1. An n-tuple of bits (denoted α, β, etc) is a function from {1, . . . , n} to {0, 1}. Such function
should be understood as a propositional valuation of the variables x1, . . . , xn: for all i∈{1, . . . , n}, if
αi=0 then it is interpreted to mean “xi is false” else it is interpreted to mean “xi is true”. Let BITn

be the set of all n-tuples of bits. An n-model is a structure of the form (α, S) where α∈BITn and
S⊆BITn. Such structure should be understood as a tree-like Kripke model of depth at most 1: α is the
valuation of its root node and S is the set of the valuations of its non-root nodes. Let MODn be the
set of all n-models. We shall say that an n-model (α, S) is degenerated if S=∅. Let MODdeg

n be the
set of all degenerated n-models. Notice that ‖MODdeg

n ‖=2n. Notice also that for all sets S of n-tuples
of bits, S × {∅} is a set of degenerated n-models. The binary relation |=n of n-satisfiability between
MODn and FORn is defined as expected. In particular,

• (α, S)|=nxi iff αi=1 where i∈{1, . . . , n},

• (α, S)|=n�ϕ iff for all β∈S, (β, ∅)|=nϕ.

As a result, (α, S)|=n♦ϕ iff there exists β∈S such that (β, ∅)|=nϕ.

Proposition 3. For all ϕ∈FORn, ϕ∈L2 iff for all (α, S)∈MODn, (α, S)|=nϕ.

For all α∈BITn, the n-formula

• x̄α=
∧{xαi

i : i∈{1, . . . , n}}

exactly characterizes the propositional valuation represented by α. For all (α, S)∈MODn, the n-
formula

• forn(α, S)=x̄α ∧�∨{x̄γ : γ∈S} ∧∧{♦x̄γ : γ∈S}

exactly characterizes the tree-like Kripke model of depth at most 1 represented by (α, S).

Proposition 4. Let (α, S), (β, T )∈MODn. The following conditions are equivalent: (i) (α, S)=(β, T );
(ii) (α, S)|=nforn(β, T ).

Proposition 5. Let (k, σ)∈SUBn. For all (α, S)∈MODk, there exists (β, T )∈MODn such that
(α, S)|=kσ(forn(β, T )).
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Proposition 6. Let (k, σ)∈SUBn. Let (α, S)∈MODk. For all (β, T ), (γ, U)∈MODn, if (α, S)|=k

σ(forn(β, T )) and (α, S)|=kσ(forn(γ, U)) then (β, T )=(γ, U).

For all k≥1, a (k, n)-morphism is a function f from MODk to MODn such that for all
(α, S)∈MODk and for all (β, T )∈MODn, if f(α, S)=(β, T ) then2

forward condition: for all γ∈S, there exists δ∈T such that f(γ, ∅)=(δ, ∅),

backward condition: for all δ∈T , there exists γ∈S such that f(γ, ∅)=(δ, ∅).

Proposition 7. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and (γ, U)∈MODn. If
f(β, T )=(γ, U) then the following conditions hold: (i) the image by f of T × {∅} is equal to U × {∅};
(ii) T=∅ iff U=∅.

Proposition 8. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and (γ, U)∈MODn. If the
following conditions hold then f(β, T )=(γ, U): (i) f(β, T )|=nx̄

γ; (ii) for all δ∈T , there exists ε∈U
such that f(δ, ∅)=(ε, ∅); (iii) for all ε∈U , there exists δ∈T such that f(δ, ∅)=(ε, ∅).

5 Unification
Let n≥1. An n-unifier of ϕ∈FORn is an n-substitution (k, σ) such that σ(ϕ)∈L2. We shall say that
ϕ∈FORn is n-unifiable if there exists an n-unifier of ϕ. We shall say that a set Σ of n-unifiers of
an n-unifiable ϕ∈FORn is n-complete if for all n-unifiers (k, σ) of ϕ, there exists (l, τ)∈Σ such that
(l, τ)4n(k, σ). As is well-known, for all ϕ∈FORn, if ϕ is n-unifiable then for all minimal n-complete
sets Σ,∆ of n-unifiers of ϕ, Σ and ∆ have the same cardinality. Then, an important question is the
following: when ϕ∈FORn is n-unifiable, is there a minimal n-complete set of n-unifiers of ϕ? When
the answer is “yes”, how large is this set? For all n-unifiable ϕ∈FORn, we shall say that:

• ϕ is n-nullary if there exists no minimal complete set of unifiers of ϕ,

• ϕ is n-infinitary if there exists a minimal complete set of unifiers of ϕ with infinite cardinality,

• ϕ is n-finitary if there exists a minimal complete set of unifiers of ϕ with finite cardinality ≥ 2,

• ϕ is n-unitary if there exists a minimal complete set of unifiers of ϕ with cardinality 1.

Proposition 9. The n-unifiable n-formula ♦x1 → �x1 is n-finitary.

For all n-unifiable ϕ∈FORn and for all π≥1, we shall say that ϕ is n-π-reasonable if for all n-unifiers
(k, σ) of ϕ, if k≥π then there exists an n-unifier (l, τ) of ϕ such that (l, τ)4n(k, σ) and l≤π.

Proposition 10. Let ϕ∈FORn be n-unifiable and π≥1. If ϕ is n-π-reasonable then ϕ is either n-
finitary, or n-unitary.

6 Main results
Let n≥1.

Proposition 11. Let k≥n. For all (k, n)-morphisms g, there exists a surjective (k, n)-morphism f such
that for all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then g(α, S)=g(β, T ).

2The morphisms described here should not be mistaken for the bounded morphisms usually considered in modal logic [9,
Definition 2.10]. In particular, in the above definition, there is no condition related to the propositional valuation of the variables.
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Proof. Let g be a (k, n)-morphism. Let ∼k be the equivalence relation on MODk defined by:

• (α, S)∼k(β, T ) iff g(α, S)=g(β, T ).

Lemma 1. 1. ‖MODdeg
k /∼k‖≤‖MODdeg

n ‖,

2. ‖MODdeg
n ‖≤‖MODdeg

k ‖.

Hence, by Proposition 1, there exists a surjective function fdeg from MODdeg
k to MODdeg

n such that
for all (α, ∅), (β, ∅)∈MOD

deg
k , if fdeg(α, ∅)=fdeg(β, ∅) then (α, ∅)∼k(β, ∅).

Lemma 2. For all non-empty sets S, T of k-tuples of bits, if the images by fdeg of S×{∅} and T ×{∅}
are equal then the images by g of S × {∅} and T × {∅} are equal.

For all non-empty sets E of n-tuples of bits, let

• f◦(E) be the set of all (α, S)∈MODk \MOD
deg
k such that the image by fdeg of S × {∅} is

equal to E × {∅},

• f•(E) be the set of all (α, S)∈MODn \MODdeg
n such that S=E.

Notice that since fdeg is surjective, therefore ‖f◦(E)‖≥2k. Notice also that ‖f•(E)‖=2n.

Lemma 3. For all non-empty sets E of n-tuples of bits,

1. ‖f◦(E)/∼k‖≤‖f•(E)‖,

2. ‖f•(E)‖≤‖f◦(E)‖.

Thus, for all non-empty sets E of n-tuples of bits, by Proposition 1, there exists a surjective func-
tion fE from f◦(E) to f•(E) such that for all (α, S), (β, T )∈f◦(E), if fE(α, S)=fE(β, T ) then
(α, S)∼k(β, T ). Let f be the function from MODk to MODn such that for all (α, ∅)∈MOD

deg
k ,

• f(α, ∅)=fdeg(α, ∅)

and for all (α, S)∈MODk \MODdeg
k , E being the non-empty set of n-tuples of bits such that the

image by fdeg of S × {∅} is equal to E × {∅},

• f(α, S)=fE(α, S).

Lemma 4. f is surjective.

Lemma 5. f is a (k, n)-morphism.

Lemma 6. For all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then g(α, S)=g(β, T ).

This finishes the proof of Proposition 11.

Proposition 12. For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is n-n-reasonable.

Proof. Let ϕ∈FORn. Suppose ϕ is n-unifiable. Let (k, σ) be an n-unifier of ϕ such that k≥n. Hence,
σ(ϕ)∈L2. Let g be the function from MODk to MODn such that for all (α, S)∈MODk,

• g(α, S) is the (β, T )∈MODn such that (α, S)|=kσ(forn(β, T )).

Notice that by Propositions 5 and 6, g is well-defined.

Lemma 7. g is a (k, n)-morphism.
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Lemma 8. For all (α, S), (β, T )∈MODk, if g(α, S)=g(β, T ) then for all i∈{1, . . . , n}, (α, S)|=kσ(xi)
iff (β, T )|=kσ(xi).

Since k≥n therefore by Proposition 11 and Lemma 7, let f be a surjective (k, n)-morphism such
that for all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then g(α, S)=g(β, T ). Let (n, τ), (k, ν) be the
n-substitutions defined by:

• τ(xi)=
∨{forn(f(α, S)) : (α, S)∈MODk is such that (α, S)|=kσ(xi)} where i∈{1, . . . , n},

• ν(xi)=
∨{fork(α, S) : (α, S)∈MODk is such that f(α, S)|=nxi} where i∈{1, . . . , n}.

Lemma 9. Let ψ∈FORn. For all (β, T )∈MODn, the following conditions are equivalent: (i) there
exists (α, S)∈MODk such that f(α, S)=(β, T ) and (α, S)|=kσ(ψ); (ii) for all (α, S)∈MODk, if
f(α, S)=(β, T ) then (α, S)|=kσ(ψ); (iii) (β, T )|=nτ(ψ).

Lemma 10. For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(xi) iff f(β, T )|=nxi.

Lemma 11. Let (β, T )∈MODk and (γ, U)∈MODn. The following conditions are equivalent:
(i) f(β, T )=(γ, U); (ii) (β, T )|=kν(forn(γ, U)).

Lemma 12. For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(τ(xi)) iff (β, T )|=kσ(xi).

Since σ(ϕ)∈L2, therefore by Proposition 3, for all (α, S)∈MODk, (α, S)|=kσ(ϕ). Thus, by Lemma 9,
for all (β, T )∈MODn, (β, T )|=nτ(ϕ). Consequently, by Proposition 3, τ(ϕ)∈L2. Hence, (n, τ) is an
n-unifier of ϕ. Since by Lemma 12, (n, τ)4n(k, σ), therefore ϕ is n-n-reasonable.

Theorem 1. For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is either n-finitary, or n-unitary.

7 Conclusion
In this paper, within the context of elementary unification, we have proved Theorem 1 asserting that in
K + ��⊥, unifiable formulas are either finitary, or unitary. We believe that in our line of reasoning,
the main properties of K +��⊥ are the ones given in Propositions 2, 5 and 6. Proposition 2 says that
K + ��⊥ is locally tabular3 — it is used in the proof of Proposition 10. Propositions 5 and 6 give
us the possibility to define the function g — they are used in the proof of Proposition 12. Notice that
Theorem 1 is an immediate consequence of Propositions 10 and 12. Here are open questions:

1. determine the unification type of the locally tabular modal logic K +�d⊥ for each d≥3,

2. determine the unification types of other locally tabular modal logics like the ones studied in [19, 20,
21],

3. determine the unification types of the modal logics KB, KD and KT.

We conjecture that within the context of elementary unification, the modal logics mentioned in Items 1
and 2 are either finitary, or unitary. As for the modal logics considered in Item 3, it is only known that
KD and KT are not unitary within the context of elementary unification and KB, KD and KT are
nullary within the context of unification with parameters [4, 5, 6].

3A modal logic L is locally tabular if for all n≥1, the equivalence relation ≡n on FORn defined by

• ϕ≡nψ iff ϕ↔ ψ∈L
possesses finitely many equivalence classes. The most popular of all locally tabular modal logics is probably S5. See [19, 20, 21]
for other examples of locally tabular modal logics.
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Abstract

This is a work in progress on nominal anti-unification modulo associative (A), commu-
tative (C) and associative-commutative (AC) equational theories. A rule-based algorithm
to solve nominal anti-unification problems is obtained by extending the existing algorithm
with rules dedicated to the equational part. Also, we have extended the algorithm which
deals with nominal equivariance to take into account the theories involved. This is a first
step towards the investigation of nominal anti-unification problems modulo equational the-
ories as well as its relation to equational higher-order pattern anti-unification.

1 Introduction

In general, the anti-unification problem is concerned with finding a generalization of two given
input terms. More specifically, the nominal anti-unification problem for two nominal terms t1
and t2 and a freshness context ∇ is concerned with finding a term t that is more general than
the original ones under consideration of ∇. That is, there exist substitutions σ1 and σ2 such
that ∇ ` t1 ≈ tσ1 and ∇ ` t2 ≈ tσ2. The interesting generalizations are the least general
ones, which retain the common structure of t1 and t2 as much as possible. In [1] the authors
investigated the problem of computing least general generalizations (lgg) for nominal terms-in-
context, i.e., pairs of the form 〈∇, s〉, where ∇ is a freshness context and s is a nominal term.
The authors have identified that, in general, without restricting the set of atoms permitted
in the generalization to be finite, there is no lgg for terms-in-context. Even more, a minimal
complete set of generalizations does not exist.

In the context of nominal equation solving, extensions of nominal unification with recur-
sive let [2], with atom variables [3], modulo equational theories [4, 5, 6, 7] were investigated.
In particular, for equational theories involving commutative operators it was identified that
the nominal unification type was not unitary anymore and an approach using fixed point con-
straints was proposed in [7]. Therefore it is natural to investigate such extensions for nominal
anti-unification and also check how equational theories can affect the existing nominal anti-
unification framework.

In this work we investigate the extension of the current nominal anti-unification algo-
rithm [1], by proposing rules that can deal with the equational theories for associativity (A),
commutativity (C) and associtivity-commutativity (AC). The preliminary results were obtained
exploring the fact that there is a reduction from nominal unification to higher-order pattern
unification (HOPU) [8], where higher-order patterns [9] are λ-terms whose free variables may
only be applied to a sequence of distinct bound variables. And also the existing extension
of the HOPU algorithm [10] which takes into account associative (A), commutative (C) and
associative-commutative (AC) symbols [11]. Therefore, it was not surprising that their rules
could be adapted to our problem. In addition, we had to extend the algorithm for solving the
equivariance problem with rules dedicated to the aforementioned equational theories.
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2 Preliminaries

We assume the reader is familiar with the nominal syntax and only recall the main concepts
and notations that are needed in the paper; for more details we refer the reader to [12, 13].

Nominal Syntax. Fix a countable infinite set of variables X = {X,Y, Z, . . .} and a countable
infinite set of atoms A = {a, b, c, . . .}, such that X ∩ A = ∅. Variables represent meta-level
unknowns and atoms object-level variable symbols. Atoms are identified by their name, so it
will be redundant to say two atoms a and b are different. A signature Σ is a set of term-formers
(disjoint from A and X ) such that to each f ∈ Σ is assigned a unique non-negative integer n,
called the arity of f , written as f : n. A permutation π is a bijection A → A with finite domain,
i.e., the set supp(π) := {a ∈ A | π(a) 6= a} is finite. Id denotes the identity permutation. The
composition of two permutations π and π′ will be denoted as π ◦ π′.

Nominal terms are given by the following grammar: s, t ::= a | π ·X | a.t | fE(t1 . . . tn),
where a is an atom, π ·X is a suspension (or moderated variable), a.t denotes the abstraction
of atom a in the term t, and fE(t1, . . . tn) is a function application, where fE ∈ Σ and fE : n.
The parameter E describes the equational theory assigned to the function symbol f , which can
be ∅, A,C and AC. In the case we have f∅, we will omit the superscript, writing only f .

The action of a permutation π on a term t is defined by the structure of t as follows: π •a =
π(a), π ·(π′ ·X) = (π ◦π′)·X, ,π • (a.t) = π(a).(π • t) and π • f(t1, . . . , tn) = f(π • t1, . . . , π • tn).
The difference set of π and π′ is defined as ds(π, π′) = {a | π • a 6= π′ • a}.

Substitutions, range over σ, γ, . . ., are defined as maps from variables to nominal terms
with finite domain. The action of a substitution σ on a term t, denoted as tσ, is inductively
defined by: aσ = a, (π ·X)σ = π ·(Xσ), (a.t)σ = a.(tσ) and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).
Substitutions are written in postfix notation: t(σγ) = (tσ)γ.

Equality and Freshness Constraints. In the nominal theory freshness constraints are used
to avoid the problem of capturing free atoms. A freshness constraint is a pair of the form a#X
and its intended meaning is that a cannot occur as a free atom in an instantiation of X. A finite
set of freshness constraints is called a freshness context, and we use ∇ and Γ to denote them.
An α-equality constraint is a pair of the form s ≈ t and means that s is α-equivalent to t. The
notion of α-equivalence between two nominal terms, denoted by ≈, and the freshness predicate
# are defined by the rules in Figure 1.

(at)∇ ` a ≈ a
ds(π, π′)#X ∈ ∇

(var)
∇ ` π·X ≈ π′ ·X

∇ ` t ≈ t′
(abs-a)

∇ ` a.t ≈ a.t′

∇ ` t ≈ (a a′) • t′ ∇ ` a#t′
(abs-b)

∇ ` a.t ≈ a′.t′
∇ ` ti ≈ t′i

(f)
∇ ` f(t1, . . . tn) ≈ f(t′1, . . . , t

′
n)

(#at)
∇ ` a#a′

(π−1 • a#X) ∈ ∇
(#var)∇ ` a#π·X

(#abs-a)∇ ` a#a.t
∇ ` a#t

(#abs-b)
∇ ` a#a′.t

∇ ` a#ti
(#f)∇ ` a#f(t1, . . . tn)

Figure 1: Equality and Freshness Rules. In rules f and #f : i = 1 . . . n

Equality Constraints Modulo A, C, and AC. We define the predicates, ≈A, ≈C , and
≈AC , for α-equivalence modulo A, C, and AC, respectively. The set of rules for each theory
E ∈ {A,C,AC} is obtained by adding the specific rule (E) in Figure 2, to the set of equality rules
in Figure 1,replacing ≈ by the corresponding ≈E . Note that we will omit the fA and fAC from
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the right premise in the rules (A) and (AC), if n = 2. For instance, instead of fA(t2) ≈A fA(s2)
we simply get t2 ≈A s2. For more details, we refer the reader to [4].

∇ ` t1 ≈A s1 ∇ ` fA(t2, . . . , tn) ≈A fA(s2, . . . , sn)
(A)

∇ ` fA(t1, . . . , tn) ≈A fA(s1, . . . , sn)

∇ ` t1 ≈C si ∇ ` t2 ≈C sj
(C)

∇ ` fC(t1, t2) ≈C fC(s1, s2)

∇ ` t1 ≈AC sk ∇ ` fAC(t2, . . . , tn) ≈AC fAC(s1, . . . , sk−1, sk+1, . . . , sn)
(AC)

∇ ` fAC(t1, . . . , tn) ≈AC fAC(s1, . . . , sn)

Figure 2: Equational Rules. Where n ≥ 2, i = 1, 2 and j = (i mod 2) + 1

3 Nominal Anti-Unification

In this section we recall the anti-unification algorithm proposed in [1] and propose an extension
to it which takes into account the equational theories A, C and AC.

A (nominal) anti-unification equation is a triple of the form X : t , s where X is a variable,
called the generalization variable, and t, s are nominal terms. A (nominal) anti-unification
problem P is a finite set of anti-unification equations.

3.1 NAU: nominal anti-unification algorithm

The nominal anti-unification algorithm for the empty theory was introduced in [1] and operates
on tuples of the form P ; S; Γ; σ where: P denotes the set of unsolved anti-unification equations;
S denotes the set of solved anti-unification equations; Γ denotes the freshness context computed
so far; and σ is a substitution that holds the generalized term. Furthermore, there are two
global parameters, a finite set A of atoms (the ones that are allowed in the generalization) and
a freshness context ∇. The symbol ·∪ denotes the disjoint union operation.

Dec : Decomposition

{X : h(t1, ..., tm) , h(s1, ..., sm)} ·∪P ;S; Γ;σ =⇒ ⋃m
i=1{Yi : ti , si} ∪ P ;S; Γ;σ{X/h(Y1, . . . , Ym)}

where h ∈ Σ ∪A, Y1, . . . , Ym are fresh variables of the corresponding sorts,m ≥ 0.

Abs : Abstraction

{X : a.t , b.s} ·∪P ;S; Γ;σ =⇒ {Y : (c a) • t , (c b) • s} ∪ P ;S; Γ;σ{X/c.Y },
where Y is fresh , c ∈ A,∇ ` c#a.t,∇ ` c#b.s
Sol : Solving

{X : t , s} ·∪P ;S; Γ; σ =⇒ P ;S ∪ {X : t , s}; Γ ∪ Γ′;σ,
if none of the previous rules is applicable. Γ′ := {a#X | a ∈ A ∧∇ ` a#t ∧∇ ` a#s}.
Mer : Merging

P ; {X : t1 , s1, Y : t2 , s2} ·∪S; Γ;σ =⇒ P ; {X : t1 , s1} ∪ S; Γ{Y/π·X};σ{Y/π·X},
where π is an Atoms(t1, s1, t2, s2)− based permutation s.t. ∇ ` π • t1 ≈ t2,∇ ` π • s1 ≈ s2.

To compute a generalization of two given terms t, s and a freshness context ∇ w.r.t. a
set of atoms A, we start with {X : t , s}; ∅; Γ; ε and apply the rules exhaustively. The
generalization variable X does neither occur in ∇, nor in t, nor in s. Intuitively, it represents
the generalization that becomes less and less general as the algorithm advances (by applying
some rules). The result of this procedure is of the form ∅; S; Γ; σ were 〈Γ, Xσ〉 is the computed
generalization and S contains the differences of t and s.
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3.2 Equational Nominal Anti-Unification

Associative function applications are flattened, i.e., for any associative function symbol, say fA,
all subterms of the form fA(t1, . . . , f

A(s1 . . . , sm), . . . , tn) are rewritten as fA(t1, . . . , s1 . . . ,
sm, . . . , tn). Furthermore, fA(t) (fA applied to a single argument) stands for t. The decompo-
sition rule defined for the empty theory needs to be extended for associative and/or commutative
function symbols. We consider each case separately in the style of [11]. Below Y1, Y2 are fresh
variables of the corresponding sorts, j = (i mod 2) + 1, 1 ≤ k < n, 1 ≤ l < m and n,m ≥ 2.

DecA : Associative Decomposition

{X : fA(t1, . . . , tn) , fA(s1, . . . , sm)} ·∪P ;S; Γ;σ =⇒ {Y1 : fA(t1, . . . , tk) , fA(s1, . . . , sl),

Y2 : fA(tk+1, . . . , tn) , fA(sl+1, . . . , sm)} ∪ P ;S; Γ;σ{X/fA(Y1, Y2)}
DecC : Commutative Decomposition

{X : fC(t1, t2) , fC(s1, s2)} ·∪P ;S; Γ;σ =⇒ {Y1 : t1 , si, Y2 : t2 , sj} ∪ P ;S; Γ;σ{X/fC(Y1, Y2)}
DecAC : Associative-Commutative Decomposition

{X : fAC(t1, . . . , tn) , fAC(s1, . . . , sm)} ·∪P ;S; Γ;σ =⇒ {Y1 : fAC(ti1 , . . . , tik ) , fAC(sj1 , . . . , sjl),

Y2 : fAC(tik+1 , . . . , tin) , fAC(sjl+1 , . . . , sjm)} ∪ P ;S; Γ;σ{X/fAC(Y1, Y2)}
where {i1 . . . , in} ≡ {1, . . . , n}, {j1 . . . , jm} ≡ {1, . . . ,m}

Example 1. Find a lgg of fAC((a b)·X ′, g(a, a, b), g(b, b, a)) , fAC(hAC(b, a, b), hAC(a, a, b), X ′).
The initial freshness context is empty and the set of allowed atoms is {a, b}. The example in-
volves branching. We will only illustrate one particular branch:

{X : fAC((a b) ·X ′, g(a, a, b), g(b, b, a)) , fAC(hAC(b, a, b), hAC(a, a, b), X ′)}; ∅; ∅; Id
=⇒k=l=1,i1=1,i2=2,i3=3,j1=3,j2=1,j3=2

DecAC

{Y1 : (a b) ·X ′ , X ′, Y2 : fAC(g(a, a, b), g(b, b, a)) , fAC(hAC(b, a, b), hAC(a, a, b))}; ∅; ∅; {X/fAC(Y1, Y2)}
=⇒k=l=1,i1=j1=1,i2=j2=2

DecAC

{Y1 : (a b) ·X ′ , X ′, Z1 : g(a, a, b) , hAC(b, a, b), Z2 : g(b, b, a) , hAC(a, a, b)}; ∅; ∅; {X/fAC(Y1, Z1, Z2)}
=⇒3

Sol

∅; {Y1 : (a b) ·X ′ , X ′, Z1 : g(a, a, b) , hAC(b, a, b), Z2 : g(b, b, a) , hAC(a, a, b)}; ∅; {X/fAC(Y1, Z1, Z2)}
=⇒Mer ∅; {Y1 : (a b) ·X ′ , X ′, Z1 : g(a, a, b) , hAC(b, a, b)}; ∅; {X/fAC(Y1, Z1, (a b) · Z1)}

Note that in the last step we need to solve an equivariance problem. The computed term in con-
text is 〈∅, fAC(Y1, Z1, (a b)·Z1)〉 and we can obtain the original terms by applying, resp., fAC(Y1,
Z1, (a b)·Z1){Y1/(a b) ·X ′, Z1/g(a, a, b)}, and fAC(Y1, Z1, (a b)·Z1){Y1/X ′, Z1/h

AC(b, a, b)}.

4 Equivariance

In the merging rule of NAU we need to decide the (nominal) equivariance problem, that is: Given
a set E of equations of nominal terms, is there a permutation π of the atoms that appear in
E, such that all the equations become true (under consideration of E) when applying π to
all the left-hand side terms, under the consideration of a given freshness context? That is,
∇ ` π • t ≈ s for each equation t ≈ s ∈ E. To solve that problem we extend the nominal
equivariance algorithm that was introduced for the empty theory in [1]. It operates on tuples
of the form E; ∇; A; π where E is a set of equations of nominal terms t ≈ s; ∇ is a freshness
context; A is a finite set of atoms; and π is the permutation which is returned in case of success.
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Equivariance algorithm (E). The algorithm works in two phases: Phase 1 decomposes and
simplifies the given equivariance problem. Phase 2 tries to compute a permutation. The first
phase involves branching. The entire procedure succeeds if one of the branches succeeds and, in
that case, it returns a permutation computed by a successful branch. Note that there might be
more than one successful branches. Again, we assume that associative function applications are
flattened. Below k ≥ 0, n ≥ 2, 1 ≤ i ≤ n, i′ ∈ {1, 2}, (s′1, . . . , s

′
n−1) = (s1, . . . , si−1, si+1, . . . , sn)

and c is an auxiliary atom of the corresponding sort that does not occur in A.

Phase 1. Simplifying the equivariance problem.

Dec-E :

{f(t1, . . . , tk) ≈ f(s1, . . . , sk)} ·∪E;∇;A; Id =⇒ ⋃k
j=1{tj ≈ sj} ∪ E;∇;A; Id .

DecC-E :
{fC(t1, t2) ≈ fC(s1, s2)} ·∪E;∇;A; Id =⇒ {t1 ≈ si′ , t2 ≈ s(i′ mod 2)+1} ∪ E;∇;A; Id .

DecAC-E :
{fAC(t1, . . . , tn) ≈ fAC(s1, . . . , sn)} ·∪E;∇;A; Id =⇒
{t1 ≈ si, fAC(t2, . . . , tn) ≈ fAC(s′1, . . . , s

′
n−1)} ∪ E;∇;A; Id .

Alp-E :
{a.t ≈ b.s} ·∪E;∇;A; Id =⇒ {(c a) • t ≈ (c b) • s} ∪ E;∇;A; Id .

Sus-E :
{π1 ·X ≈ π2 ·X} ·∪E;∇;A; Id =⇒ {π1 • a ≈ π2 • a | a ∈ A ∧ a#X 6∈ ∇} ∪ E;∇;A; Id .

Phase 2. Computing the permutation.

Rem-E :
{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; π, if π • a = b.

Sol-E :
{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; (π • a b)π, if b ∈ A, π • a 6= b.

Note that the equivariance algorithm doesn’t contain a separate decomposition rule for asso-
ciative symbols, since, in that case, flattening of associative function applications and simply
applying Dec-E suffices.

Example 2 (Cont. Example 1). To obtain the permutation in the last step of the previous
example, we proceeded as following:

{g(a, a, b) ≈ g(b, b, a), hAC(b, a, b) ≈ hAC(a, a, b)}; ∅; {a, b}; Id =⇒Dec-E

{a ≈ b, b ≈ a, hAC(b, a, b) ≈ hAC(a, a, b)}; ∅; {a, b}; Id =⇒i=1
DecAC-E

{a ≈ b, b ≈ a, hAC(a, b) ≈ hAC(a, b)}; ∅; {a, b}; Id =⇒i=2
DecAC-E

{a ≈ b, b ≈ a}; ∅; {a, b}; Id =⇒Sol-E
Rem-E ∅; ∅; ∅; (a b)

The example illustrates a successful branch and the computed permutation is (a b). Note
that, in the third step, hAC(t) (hAC applied to a single argument) stands for t.

5 Conclusion

We have investigated the extension of the nominal anti-unification problem to theories A,C and
AC. The extended algorithm is obtained by adding specific rules to deal with each particular
theory as well as the adaptation of the equivariance algorithm. In the nominal unification
modulo commutativity scenario one knows that equations of the form π · X ≈C X are the
cause for the type of the nominal unification problem to be non-unitary, differently from the

5:5



A, C and AC Nominal Anti-Unification Baumgartner, Nantes-Sobrinho

first order approach. However, in the nominal anti-unification setting modulo commutativity,
a fixed-point anti-equation {X : π · Y1 ,C Y1}, is trivially solvable, and causes no unexpected
problems. Besides, since there is a reduction from nominal unification to higher-order pattern
unification, we plan to investigate whether there is a simple reduction from our setting to the
setting of equational HOPAU from [11]. It would also be interesting to check how the nominal
anti-unification algorithm deals with recursive let as in[2].
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Abstract

Term schemata are infinite sequences of terms which are defined inductively. We in-
vestigate the unification problem for term schemata and formulate some open problems.
The solution of these problems is relevant to the analysis of proof schemata, in particular
to schematic cut-elimination.

1 Introduction
Recursive definitions of functions play a central role in computer science, particularly in func-
tional programming. While recursive definitions of formulas and proofs are less common, they
are of increasing importance in automated proof analysis. Proof schemata, i.e. recursively de-
fined infinite sequences of proofs, serve as an alternative formulation of induction. Prior to the
formalization of the concept, an analysis of Fürstenberg’s proof of the infinitude of primes [1]
suggested the need for a formalism quite close to the type of proof schemata defined in [6].
The underlying method for this analysis was CERES [2] (cut-elimination by resolution) which,
unlike reductive cut-elimination, can be applied to recursively defined proofs by extracting a
schematic unsatisfiable universal formula (the characteristic schema) and constructing a re-
cursively defined refutation. Moreover, Herbrand’s theorem can be extended to an expressive
fragment of proof schemata, that is those formalizing k-induction [4, 6]. Unfortunately, the
construction of recursively defined refutations is a highly complex task. In previous work [6] a
superposition calculus for certain types of formulas was used for the construction of refutation
schemata, but only works for a weak fragment of arithmetic and is hard to use interactively.
In [3] the schematic approach was substantially generalized; the new method is capable of han-
dling several recursion parameters and thus can deal with nested inductions. To refute the
corresponding characteristic schemata a new resolution calculus for universal formula schemata
was developed (see also [3]). A crucial part of this calculus is unification which is used to
define single resolution steps. Unlike ordinary first-order unification the problem here consists
in unifying term schemata, i.e. syntactic expressions representing infinite (recursively defined)
sequences of terms. In [3] we introduced the new concept of s-unification (schematic-unification)
which replaces ordinary unification in case of schemata. But s-unification is just one possibility
to approach unification of term schemata. In this paper we describe the general problem of
unifying term schemata and characterize different subclasses of schematic unification problems.
Several models for unification of term schemata were developed in the 1990ties; we just mention
[5] and [8]. However, our approach differs from those mentioned above; it is based on primitive
recursive definitions and the unification problem is undecidable in general.
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2 Unification problems for term schemata
Below we define the general problem, give some basic definitions and formulate decision prob-
lems for schematic unification. In the most general sense a term schema is an arbitrary infinite
sequence of first-order terms sn. Formally we work with syntactic expressions ŝ(n) where n is a
parameter (a number variable). For any assignment σ = {n→ α}, for α being a numeral, ŝ(α)
evaluates to a term sα; for the evaluation via σ we write ŝ(n)↓σ= sα. We use a similar frame-
work for substitution schemata. If λ̂(n) is a syntactic expression representing a substitution
schema and σ is an assignment (as defined above) then λ̂(n)↓σ is a substitution λα.

Definition 1 (unification of term schemata). Given two term schemata ŝ(n) and t̂(n) we
define ŝ(n), t̂(n) as unifiable if there exists a substitution schema λ̂(n) such that ˆs(n)λ̂(n)↓σ=

ˆt(n)λ̂(n)↓σ for all assignments σ.

For a fully formal definition of term schemata on which this paper is based see [3]. Here we
define two different types of schematic unification problems, simple and global ones. We use
basic definitions from [3], especially defined and undefined symbols and an ordering < of the
defined symbols. For applications in computational logic only computable term schemata makes
sense. Here we consider only schemata defined by primitive recursion. The so-called simple term
schemata are schemata with a fixed number of variables defined via primitive recursion:

Definition 2 (simple term schema). Let ~x be a tuple of first-order variables (variables of type
ι) and n be a parameter (a variable of type ω). A simple term schema is defined by primitive
recursive definitions of the form

f̂(~x,0) = g(~x),
f̂(~x, s(n)) = h(~x, n, z){z ← f̂(~x, n)}

where g(~x) is a term over the variables ~x and h(~x, n, z) is a term over the variables ~x, z and the
parameter n. If f̂ is not a minimal defined symbol then both g(~x) and h(~x, n, z) may contain
defined symbols û with û < f̂ .

Note that the general unfication problem for simple term schemata is undecidable (the
equivalence problem of loop-programs can be reduced to it).

Example 1. Consider the following simple term schema:

f̂(x,0) = h(a, a) f̂(x, s(n)) = h(x, f̂(x, n))

f̂1(x, y,0) = h(a, a) f̂1(x, y, s(n)) = h(x, f̂(y, n))

ĝ(x, y,0) = h(a, a) ĝ(x, y, s(n)) = h(ĝ(x, y, n), y)

Using these simple term schemata we can form the following four unification problems:

f̂(x, s(n)) ?= ĝ(x, x, s(n)), f̂(x, s(n)) ?= ĝ(x, y, s(n)),
f̂(x, s(n)) ?= ĝ(y, y, s(n)), f̂1(x, y, s(n)) ?= ĝ(z, z, s(n)).

Notice that the first three problems fail due to the occurs-check while the fourth problem does
not and is unifiable. Let us consider the first and the last problem in more detail:
f̂(x, s(n)) ?= ĝ(x, x, s(n)) is solvable iff for all subsitutions of the number variable n by a numeral
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k the normal forms of f̂(x, s(k)) and ĝ(x, x, s(k)) are unifiable (they are ordinary first-order
terms). Therefore the first unification problem is unsolvable because f̂(x, s(1)) and ĝ(x, x, s(1))
are not unifiable; note that

f̂(x, 2) = h(x, f̂(x, 1)) = h(x, h(x, f̂(x, 0))) = h(x, h(x, h(a, a))),
ĝ(x, x, 2) = h(ĝ(x, x, 1), x) = h(h(ĝ(x, x, 0), x), x) = h(h(h(a, a), x), x).

The fourth problem is solvable. The infinite sequence of unifiers is given by the substitution
schema

ϑ̂(n) = {x← ĝ(f̂(y, n), f̂(y, n), n), z ← f̂(y, n)}.
Even though simple term schemata allow for recursive definitions, recursive variable occurrence
causes unification to fail in most cases, thus, like the fourth example, unification is usually
decided by analyzing the structure of the terms.

In contrast to simple term schemata global term schemata are based on primitive recur-
sive definitions using global variables instead of ordinary first-order variables (see [3]). These
schemata may contain an increasing numbers of variables depending on the assignment of the
parameter n.

Definition 3 (global term schema). Let ~X be a tuple of global variables (variables of type
ω → ι) and n be a parameter (a variable of type ω). A global term schema is defined by
primitive recursive definitions of the form

f̂( ~X,0) = t( ~X),
f̂( ~X, s(n)) = s( ~X, n, z){z ← f̂( ~X, n)}

where t( ~X) is a term over the global variables ~X and s( ~X, n, z) is a term over the global variables
~X, the individual variable z and the parameter n. If f̂ is not a minimal defined symbol then
both t( ~X) and s( ~X, n, z) may contain defined symbols û with û < f̂ .

A formal definition of (the semantics of) objects of the form f̂( ~X, n) can be found in [3].
While for simple term schemata the domain variables of the unification schema form a fixed
finite set, the unifiers in global term schemata have domains which may depend on the parameter
n. Still it is possible that there exists a unification schema of the form

ϑ̂(n) : {X(s1)← t1, . . . , X(sk)← tk}

where k is a fixed number. Note that, for every assignment σ, ϑ̂(n)↓σ has a domain which varies
with σ but is always of a fixed size k. We refer to such unifiers as s-unification schemata [3].
The following examples illustrates such an s-unification.

Example 2. Consider the following global term schema:

f̂(X,0) = h(a,X(0)) f̂(X, s(n)) = h(X(s(n)), f̂(X,n))

ĝ(X,0) = h(X(0), a) ĝ(X, s(n)) = h(ĝ(X,n), X(s(n)))

Using these schemata we can define the unification problem

f̂(X, s(n)) ?= ĝ(X, s(n))
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which has as a unification schema, ϑ̂(n) :
{
X(n)← ĥ(n)

}
where ĥ(n) is as follows:

ĥ(0) = a ĥ(s(n)) = h(ĥ(n), ĥ(n))

ϑ̂(n) is an s-unifier; its domain is different for every assignment of the parameter n but the
domain size is always 1. Like in the previous example the bindings may contain schematically
defined terms.

In the next example we define a global term schema and a corresponding unification problem
which is solvable (i.e. there is a formal expression representing the substitution schema) but
unsolvable via s-unifiers, i.e. if ϑ̂(n) is an unification schema of Example 3, then there exist two
assignments σ, σ′ such that |dom(ϑ̂(n)↓σ)| 6= |dom(ϑ̂(n)↓σ′)|.

Example 3. Consider the following two global schemata (where the second schema could also
be defined as a simple one):

f̂(X, 0) = X(0) f̂(X,n+ 1) = h(X(n+ 1), f̂(X,n)),
ĝ(X, 0) = X(0) ĝ(X,n+ 1) = h(X(0), ĝ(X,n)).

Note that f̂(X, 0), f̂(X, 1), f̂(X, 2) . . . evaluate to

X(0), h(X(1), X(0)), h(X(2), h(X(1), X(0))), . . .

so the number of different first-order variables is increasing. The unification problem

f̂(X,n) ?= ĝ(X,n)

is solvable. The schematic unifier has the following recursive definition

ϑ̂(0) = {}, ϑ̂(n+ 1) = {X(n+ 1)← X(0)} ∪ ϑ(n).

Note that, for σ = {n→ α} and σ′ = {n→ α+ 1}, dom(ϑ(n)↓σ′) =
{X(α + 1)} ∪ dom(ϑ(n)↓σ) and so the size of the domain is not invariant under assignments.
Obviously there exists no s-unifier (unifier with fixed domain size) for this unification problem.

Additionally, it is crucial to distinguish free schemata containing no equations between terms
- except primitive recursive definitions - and theory schemata. In order to define the class of
primitive recursive functions we need a theory schema containing equations defining projections
and constant functions. We call such a theory schema the standard schema.

Definition 4 (standard schema). A term schema (simple or global) is called a standard schema
if it contains

• equations of the form ĝ[α, i](x1, . . . , xα) = xi (where 1 ≤ i ≤ α) for every projection
function Iαi : ια → ι where Iαi (β1, . . . , βn) = βi and

• equations of the form ĥ[α, c](x1, . . . , xα) = c for every constant function of type ια → ι.

Here ĝ[α, i], ĥ[α, c] are α-ary defined function symbols.
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It is well known that the equivalence problem of standard schemata is undecidable and
equivalent to the equivalence problem of LOOP programs. The problem is even undecidable
when the recursion depth is ≤ 2 (correponding to the equivalence problem of LOOP-2 pro-
grams). As a consequence the unification problem for standard term schemata is undecidable
as well. However, when we only consider standard term schemata of recursion depth ≤ 1 (cor-
responding to the LOOP-1 class) the equivalence problem becomes decidable. Based on the
definitions above we can define the following 3 problems:

1. Is the unification problem for simple standard schemata of recursion depth ≤ 1 decidable?
In this case both the domain size and the variables occurring in the domain are fixed.
For a proof of decidability, one would need to show that unification for simple standard
schemata of recursion depth ≤ 1 is reducible to the equivalence problem of LOOP-1
programs.

2. Is the unification problem for global standard schemata of recursion depth ≤ 1 decidable?
This question is similar to the previous question, but for more general notions of unifiers
and variables, i.e. where the domain size varies and the variable indexing is part of the
object language.

3. Is the unification problem for simple and/or global free schemata decidable? When we
restrict ourselves to free schemata, we are restricting the types of functions which can be
represented. For example, without projections there is not much which can be done with
the arguments to a defined symbol within a term schema. However, such simple recursive
structures may turn up in the resolution calculus discussed in [3] which motivates our
interest in them. The situation is similar for global free schemata.

As a final remark, our investigation has thus far ignored equational unification. We are inter-
ested in studying E-unification in the term schema setting, however, due to the complexity of
such an investigation we have left it to future work. Concerning the relationship to higher-order
unification, one may notice that our use of higher-order variables (global variables) is very re-
stricted, essentially a weakened form of higher-order patterns [7]. While it may be interesting
to investigate the relationship between the two formalisms, it is not clear if free term schema
can be easily expressed in a language handled by existing higher-order unification algorithms,
nor if it would be beneficial to address it in such a setting.
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1 Introduction

Unification is a critical tool in many fields such as automated reasoning, logic programming,
declarative programming, and the formal analysis of security protocols. For many of these
applications we want to consider equational unification, where the problem is defined modulo
an equational theory E, such as Associativity-Commutativity. Since equational unification is
undecidable in general, specialized techniques have been developed to solve the problem for
particular classes of equational theories, many of high practical interest. For instance, when
the equational theory E has the Finite Variant Property (FVP) [3, 7], there exists a reduction
from E-unification to syntactic unification via the computation of finitely many variants of the
unification problem.

Another ubiquitous scenario is given by an equational theory E involved in a union of
theories F ∪ E. To solve this case, it is quite natural to proceed in a modular way by reusing
the unification algorithms available for F and for E. There are terminating and complete
combination procedures for signature-disjoint unions of theories [10, 2]. However, the non-
disjoint case remains a challenging problem. One approach to the non-disjoint combination
problem that has been successful in some cases is the hierarchical approach [5]. In this approach,
F ∪ E-unification can be considered as a conservative extension of E-unification. Then, a new
inference system related to F , say UF , can be combined with an E-unification algorithm to
obtain a F ∪ E unification algorithm. While this hierarchical approach won’t work for every
F ∪ E it can be a very useful tool when applicable. However, up to now it could be complex
to know if a combination F ∪ E could be solved via the hierarchical approach. For example,
there is no general method for obtaining the inference system UF , and the resulting hierarchical
unification procedure may not terminate.

In this paper, we consider “syntactic” theories F ∪E where UF can be defined as a system
of mutation rules, and we present new terminating instances of the hierarchical unification
procedure.

2 Preliminaries

We use the standard notation of equational and term rewriting systems [1]. An equational
theory E is regular if for any axiom l = r ∈ E, l and r have the same set of variables. An
equational theory E is collapse-free if for any axiom l = r ∈ E, l and r are non-variable terms.
An equational theory E is subterm collapse-free if for all terms t it is not the case that t =E u
where u is a strict subterm of t. A subterm collapse-free theory is necessarily regular and
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collapse-free. An equational term rewrite system, equational TRS for short, is a pair (R,E)
where R is a set of rewrite Σ-rules and E is an equational Σ-theory, Σ being a signature. An
equational TRS (R,E) is said to be E-convergent if the rewrite relation →R,E , defined via
E-matching, is E-convergent, meaning that =E ◦ →R,E ◦ =E is terminating and →R,E is
Church-Rosser modulo E. A function symbol that does not occur in {l(ε) | l→ r ∈ R} is called
a constructor for R. Let Σ0 be the subsignature of Σ that consists of function symbols occurring
in the axioms of E. An E-convergent TRS (R,E) is said to be E-constructed if all symbols in
Σ0 are constructors for R. Given two rewrite rules g → d and l→ r, the E-Forward inference
generates a new rewrite rule when l and d overlap. It is formally defined as follows:

E-Forward g → d[l′], l→ r ` (g → d[r])σ
where g → d[l′], l→ r ∈ R, l′ is not a variable, σ ∈ CSUE (l′ =? l).

An E-convergent TRS (R,E) is forward-closed if any application of E-Forward generates a rule
which is redundant in (R,E) when the premises are rules in (R,E), following an appropriate
definition of redundancy [8]. It can be shown that for any E-constructed TRS (R,E) where E
is regular, collapse-free and E-unification is finitary, (R,E) has the FVP if and only if it has a
finite closure by E-Forward.

An alien subterm of a Σ0-rooted term t is a Σ\Σ0-rooted subterm s such that all superterms
of s are Σ0-rooted. A set of equations G = {x1 = t1, . . . , xn = tn} is said to be in tree solved
form if each xi is a variable occurring once in G.

3 Hierarchical Unification

Consider now a union of theories R ∪ E where E is regular and collapse-free and (R,E) is
assumed to be E-constructed. Thanks to this assumption, R and E are “sufficiently separated”
and thus we can envision the problem of building aR∪E-unification algorithm using an approach
based on combination. A hierarchical unification procedure is parameterized by an E-unification
algorithm and a mutation-based reduction procedure U . It applies some additional rules given
in Figure 1: Coalesce, Split, Flatten, and VA are used to separate the terms, U is used to
simplify the Σ\Σ0-equations, and finally, Solve calls the E-unification algorithm.

Coalesce {x = y} ∪G ` {x = y} ∪ (G{x 7→ y})
where x and y are distinct variables occurring both in G.

Split {f(v̄) = t} ∪G ` {x = f(v̄), x = t} ∪G
where f ∈ Σ\Σ0, t is a non-variable term and x is a fresh variable.

Flatten {v = f(. . . , u, . . . )} ∪G ` {v = f(. . . , x, . . . ), x = u} ∪G
where f ∈ Σ\Σ0, v is a variable, u is a non-variable term, and x is a fresh variable.

VA {s = t[u]} ∪G ` {s = t[x], x = u} ∪G
where t is Σ0-rooted, u is an alien subterm of t, and x is a fresh variable.

Solve G ∪G0 `
∨
σ0∈CSUE (G0)

G ∪ σ̂0
where G is a set of Σ\Σ0-equations, G0 is a set of Σ0-equations, G0 is E-unifiable and not in
tree solved form, σ̂0 is the tree solved form associated with σ0, and w.l.o.g for any x ∈ Dom(σ0),
xσ0 ∈ Var(G0) if xσ0 is a variable.

Figure 1: HE rules
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Definition 1 (Hierarchical unification procedure). Assume a Σ0-theory E for which an E-
unification algorithm is known to compute a finite CSUE (G0) for all E-unification problems
G0, a Σ-theory F ∪E for which E-unification is complete for solving the Σ0-fragment of F ∪E-
unification, and an inference system U satisfying the following assumptions: U transforms only
equations of the form x0 = f(x1, . . . , xn) where x0, x1, . . . , xn are variables and f is a function
symbol in Σ\Σ0; and U is parameterized by some finite set S of F ∪ E-equalities such that the
soundness and completeness of each inference `U follows from at most one equality in S. Under
these assumptions, the HE(U) inference system is defined as the repeated application of some
inference from HE (cf. Figure 1) or U , using the following order of priority: Coalesce, Split,
Flatten, VA, U , Solve. A F ∪ E-unification problem is in separate form if it is a normal
form with respect to HE\{Solve}.

Note, that when we speak of an inference system, U , this is not just a set of rules but also
a strategy for applying those rules. This could include, as in the EAC case of Proposition 3,
methods for detecting errors such as occur-checks and non-termination [6].

Proposition 1. Let (R,E) be any E-constructed TRS such that an inference system U following
Definition 1 is known for the equational theory R ∪E, in addition to an existing E-unification
algorithm. Then E, R ∪ E and U satisfy the assumptions of Definition 1, and the HE(U)
inference system provides a sound and complete R∪E-unification procedure if the normal forms
w.r.t HE(U) are either the dag solved forms or problems that are not R∪E-unifiable. If HE(U)
is terminating, then it is a R ∪ E-unification algorithm.

3.1 Subterm Collapse-Free Theories

Hierarchical unification algorithms are known for particular subterm collapse-free theories of
particular interest for protocol analysis.

Proposition 2. ([11, 6]) Let E be the empty Σ0-theory where Σ0 only consists of a binary
function symbol ∗. Consider RD = {h(x ∗ y) → h(x) ∗ h(y)} and RD1 = {f(x ∗ y, z) →
f(x, z) ∗ f(y, z)}. The equational TRSs (RD, E) and (RD1, E) are E-constructed. Moreover,
RD ∪E (resp., RD1 ∪E) is a subterm collapse-free theory admitting a unification algorithm of
the form HE(UD) (resp., HE(UD1)).

Proposition 3. ([6]) Let AC = AC(~), RE = {exp(exp(x, y), z) → exp(x, y ~ z), exp(x ∗
y, z) → exp(x, z) ∗ exp(y, z)} and RF = {enc(enc(x, y), z) → enc(x, y ~ z)}. The equa-
tional TRSs (RE , AC) and (RF , AC) are AC-constructed. Moreover, EAC = RE ∪ AC (resp.,
FAC = RF ∪ AC) is a subterm collapse-free theory admitting a unification algorithm of the
form HAC(UE) (resp., HAC(UF )).

3.2 Forward-Closed E-Constructed TRSs

For any forward-closed E-constructed TRS (R,E) such that E is regular and collapse-free, a
R ∪ E-unification algorithm of the form HE(U) can be obtained by defining some inference
system U based on the Basic Syntactic Mutation approach initiated for the class of theories
saturated by paramodulation [9], and already applied in [4] to a particular class of forward-
closed equational TRSs.

Let BSMR be the inference system given in Figure 2. One can notice that each inference rule
in BSMR generates some boxed terms. This particular annotation of terms, detailed in [9, 4],
allows us to control the rules application in such a way that BSMR is terminating.
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Imit
⋃
i{x = f(v̄i)} ∪G ` {x = f(ȳ) } ∪⋃

i{ȳ = v̄i} ∪G
where f ∈ Σ\Σ0, i > 1, ȳ are fresh variables and there are no more equations x = f(. . . ) in G.

MutConflictR {x = f(v̄)} ∪G ` {x = t , s̄ = v̄} ∪G
where f ∈ Σ\Σ0, f(s̄) → t is a fresh instance of a rule in R, f(v̄) is unboxed, and (there is
another equation x = u in G with a non-variable term u or x = f(v̄) occurs in a cycle).

ImitCycle {x = f(v̄)} ∪G ` {x = f(ȳ) , ȳ = v̄} ∪G
where f ∈ Σ\Σ0, f(v̄) is unboxed, ȳ are fresh variables and x = f(v̄) occurs in a cycle.

Figure 2: BSMR rules

Lemma 1. Assume E is any regular and collapse-free theory such that an E-unification algo-
rithm is known. Let (R,E) be a forward-closed E-constructed TRS and BSMR the inference
system given in Fig. 2. Then HE(BSMR) is a R ∪ E-unification algorithm.

Example 1. Consider R = {π1(x.y) → x, π2(x.y) → y, dec(enc(x, y), y) → x} and E =
{enc(x.y, z) = enc(x, z).enc(y, z)}. E-unification algorithms are know for this type of one-
sided distributivity [11] and can be used in a hierarchical unification procedure of the form
HE(BSMR). Since (R,E) is forward-closed and E-constructed, HE(BSMR) provides an R∪E-
unification algorithm.

4 Combined Hierarchical Unification

We are now interested in combining hierarchical unification algorithms known for E-constructed
TRSs. Given two E-constructed TRSs, say (R1, E) and (R2, E), the problem is to study the
possible construction of a (combined) hierarchical unification algorithm for (R1 ∪R2, E) using
the two hierarchical unification algorithms known for (R1, E) and (R2, E).

4.1 Combining Subterm Collapse-Free Theories

Let us first consider a technical lemma which is useful to get a hierarchical unification procedure.

Lemma 2. Let (R1, E) and (R2, E) be two E-constructed TRSs sharing only symbols in E
such that, for i = 1, 2, Ri ∪ E admits a sound and complete unification procedure of the form
HE(Ui). Assume that R1 ∪R2 ∪ E is subterm collapse-free, and for any Σ1\Σ0-rooted term t1
and any Σ2\Σ0-rooted term t2, t1 cannot be equal to t2 modulo R1∪R2∪E. Then, HE(U1∪U2)
is a sound and complete R1 ∪R2 ∪ E-unification procedure.

We study below a possible way to satisfy the assumptions of Lemma 2.

Definition 2 (Layer-preservingness). Let (R,E) be an E-constructed TRS over the signature
Σ. A Σ-term t is said to be Σ0-capped if there exist a constant-free Σ0-term u and a substitution
σ such that t = uσ, Dom(σ) = V ar(u) and Ran(σ) is a set of Σ\Σ0-rooted terms. The TRS
(R,E) is said to be layer-preserving if R ∪ E is subterm collapse-free and any normal form of
any Σ\Σ0-rooted term is Σ0-capped.

Remark 1. The assumption that rules in R are Σ\Σ0-rooted was used in [5], and layer-
preservingness generalizes this assumption.
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The property of being E-constructed and layer-preserving is modular.

Lemma 3. Assume E is subterm collapse-free, for i = 1, 2, (Ri, E) is an E-constructed layer-
preserving TRS whose signature is Σi, and Σ1∩Σ2 = Σ0. If =E ◦ →R1∪R2 ◦ =E is terminating,
then (R1 ∪R2, E) is an E-constructed layer-preserving TRS, and for any Σ1\Σ0-rooted term t1
and any Σ2\Σ0-rooted term t2, t1 cannot be equal to t2 modulo R1 ∪R2 ∪ E.

By Lemma 3, the two assumptions of Lemma 2 can be satisfied, and this leads to a hier-
archical unification procedure for the combined TRS. In the following, we consider a notion of
decreasingness in order to study the termination of this unification procedure.

Definition 3 (Decreasingness). Consider a complexity measure defined as a mapping C from
separate forms to natural numbers. A HE(U) inference system is said to be C-decreasing if
for any separate form G ∪ G0 we have that (1) for any G′ such that G ∪ G0 `U G′ ∪ G0, the
separate form of G′ ∪G0 does not increase C; (2) for any G′

0 such that G ∪G0 `Solve G ∪G′
0,

then either the separate form of G ∪G′
0 is in normal form w.r.t HE(U), or it decreases C.

Consequently, HE(U) is terminating if there exists some C such that HE(U) is C-decreasing.

Theorem 1. Assume E is a subterm collapse-free theory such that an E-unification algorithm
is known, and C is a complexity measure defined on separate forms. Let (R1, E) and (R2, E)
be two E-constructed TRSs sharing only symbols in E such that, for i = 1, 2, (Ri, E) is layer-
preserving, and Ri ∪ E admits a C-decreasing unification algorithm of the form HE(Ui). If
=E ◦ →R1∪R2 ◦ =E is terminating, then (R1 ∪ R2, E) is an E-constructed TRS such that
(R1 ∪R2, E) is layer-preserving, and R1 ∪R2 ∪E admits a C-decreasing unification algorithm
of the form HE(U1 ∪ U2).

Example 2. Consider the theories EAC and FAC introduced in Proposition 3 and the corre-
sponding hierarchical unification algorithms HAC(UE) and HAC(UF ) where the mutation rules
defining UE and UF can be found in [6]. Let SV C be the complexity measure defined as follows:
given a R ∪ E-unification problem in separate form G ∪ G0, SV C(G ∪ G0) is the number of
equivalence classes of variables shared by G and G0 that are variables abstracting Σ\Σ0-rooted
terms.

One can check that the unification algorithms HAC(UE) and HAC(UF ) are both SV C-
decreasing. By Theorem 1, we get that EAC ∪ FAC admits a SV C-decreasing unification al-
gorithm of the form HAC(UE ∪ UF ). We suspect that this complexity measure, SV C, could be
useful for proving termination in other theories.

4.2 Combining Forward-Closed E-Constructed TRSs

The union of two forward-closed E-constructed TRSs remains a forward-closed E constructed
TRS. Thus, a hierarchical unification algorithm can be constructed in a modular way in unions
of forward-closed E-constructed TRSs.

Theorem 2. Assume E is a regular and collapse-free theory such that an E-unification algo-
rithm is known. Let (R1, E) and (R2, E) be two forward-closed E-constructed TRSs sharing
only symbols in E. Then R1 ∪R2 ∪E admits a unification algorithm of the form HE(BSMR1 ∪
BSMR2

).
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1 Introduction
Our work is based on a recent, purely combinatorial view of graphs [1]. Drags are labelled
graphs equipped with roots and sprouts. Roots are vertices without predecessors that can be
seen as input ports, while sprouts are vertices without successors labelled by variables that can
be seen as output ports. Drags appear as a generalization of terms which admit many roots,
arbitrary sharing, and cycles. Rewrite rules are then pairs of drags that preserve variables and
roots, hence avoiding the creation of dangling edges when rewriting. A key aspect of drags is
that they can be equipped with a composition operator so that matching a left-hand side of
rule l w.r.t. an input drag D amounts to write D as the composition of a context graph C
with l, and rewriting D with the rule l → r amounts to replace l with r in that composition.
Since substitutions cannot be separated from context in presence of cycles, composition must
play both rôles of plugging a context and a substitution.

To assess our claim that drags are a natural generalization of terms, it is our program to
extend the most useful term rewriting techniques to drags: here, unification; in a paper to be
presented at IWC 2020, checking confluence by means of critical pairs.

After generalizing the term subsumption order to drags thanks to composition, we show
that unifiable drags admit a most general unifier which can be computed in quadratic time.

2 The Drag Model [1]
Drags are finite d irected ordered rooted labeled multi-graphs. Vertices with no outgoing edges
are designated sprouts. Other vertices are internal. We presuppose: a set of function symbols
Σ, whose elements, equipped with a fixed arity, are used as labels for internal vertices; and a
set of nullary variable symbols Ξ, disjoint from Σ, used to label sprouts.

Definition 1 (Drags). A drag D is a tuple ⟨V,R,L,X,S⟩, where
1. V is a finite set of vertices;

2. R ∶ [p .. p+ ∣R∣]→ V is a finite list of vertices, called roots; R(p+n) refers to the nth root
in R; unless otherwise stated, p = 1 ; we denote R by R(D);

3. S ⊆ V is a set of sprouts, leaving V ∖ S to be the internal vertices;

4. L ∶ V → Σ ∪Ξ is the labeling function, mapping internal vertices V ∖ S to labels from the
vocabulary Σ and sprouts S to labels from the vocabulary Ξ, writing v ∶ f for f = L(v);

5. X ∶ V → V ∗ is the successor function, also used relationaly, mapping each vertex v ∈ V to
a list of vertices in V whose length equals the arity of its label (that is, ∣X(v)∣ = ∣L(v)∣).

The reflexive-transitive closure X∗ of the relation X is called accessibility. Vertex v is
accessible if it is accessible from some root. A drag is clean if all its vertices are accessible.
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Terms as ordered trees, sequences of terms (forests), terms with shared subterms (dags) and
sequences of dags (jungles) are all particular kinds of clean rooted drags.

Any vertex may be a root, we do not assume that roots have no predecessors.
We use Var(D) for the set of variables labeling the sprouts of D. A drag is linear if no two

sprouts have the same label, in which case variables and sprouts can be identified.
Given two drags U,V that share no vertices, we denote by U ⊕V their juxtaposition defined

as expected, so that R(U ⊕ V ) =R(u)R(v).
2.1 Drag composition
A variable in a drag should be understood as a potential connection to a root of another drag,
as specified by a connection device called a switchboard. A switchboard ξ is a pair of partial
injective functions, one for each drag, whose domain Dom(ξ) and image Im(ξ) are a set of
sprouts of one drag and a set of positions in the list of roots of the other, respectively.

Definition 2 (Switchboard). Let D = ⟨V,R,L,X,S⟩ and D′ = ⟨V ′,R′, L′,X ′, S′⟩ be drags. A
switchboard ξ for D,D′ is a pair ⟨ξD ∶ S → [1 .. ∣R′∣]; ξD′ ∶ S′ → [1 .. ∣R∣]⟩ of partial injective
functions such that

1. s∈Dom(ξD) and L(s)=L(t) imply t∈Dom(ξD) and ξD(s)=ξD(t) for all sprouts s, t∈S;
2. s∈Dom(ξD′) and L′(s)=L′(t) imply t∈Dom(ξD′) and ξD′(s)=ξD′(t) for all s, t∈S;
3. ξ is well-behaved : it does not induce any cycle among sprouts, using ξ,R,R′ relationally:/∃ n > 0, s1, . . . , sn+1 ∈ S, t1, . . . , tn ∈ S′, s1 = sn+1. ∀i ∈ [1 .. n]. si ξDR′X ′∗ ti ξD′RX∗ si+1

The pair ⟨D′, ξ⟩ is an extension of D, a rewriting extension if ξD is surjective and ξD′ total.
Sprouts labelled by the same variable should be connected to the same vertex, as required

by conditions (1,2). These conditions are of course automatically satisfied by switchboards ξ,
called linear, defined for sprouts whose variables are all different. It follows that ξD(Dom(ξD))
must be a set, making the set difference [1 .. ∣R′∣] ∖ ξD(Dom(ξD)) well defined.

We now move to the composition operation on drags induced by a switchboard. The essence
of this operation is that the (disjoint) union of the two drags is formed, but with sprouts
in the domain of the switchboards merged with the roots to which the switchboard images
refer. Merging sprouts with their images requires one to worry about the case where multiple
sprouts are merged successively, when the switchboards map sprout to rooted-sprout to rooted-
sprout, until, eventually, an internal vertex of one of the two drags must be reached because a
switchboard is well-behaved. That vertex is called target :

Definition 3 (Target). Let D = ⟨V,R,L,X,S⟩ and D′ = ⟨V ′,R′, L′,X ′, S′⟩ be drags such that
V ∩ V ′ = ∅, and ξ be a switchboard for D,D′. The target ξ∗(s) is a mapping from sprouts in
S ∪ S′ to vertices in V ∪ V ′ defined as follows:

Let v = R′(n) if s ∈ S, and v = R(n) if s ∈ S′, where n = ξ(s).
1. If v ∈ (V ∪ V ′) ∖ (S ∪ S′), then ξ∗(s) = v.
2. If v ∈ (S ∪ S′) ∖Dom(ξ), then ξ∗(s) = v.
3. If v ∈ Dom(ξ) , then ξ∗(s) = ξ∗(v).

The target mapping ξ∗(_) is extended to all vertices of D and D′ by letting ξ∗(v) = v when
v ∈ (V ∖ S) ∪ (V ′ ∖ S′).
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↓
f↓x⊗{x↦1}

↓
f↓y=

↓
f↓
f↓y

↓↓
f↓x⊗ {x↦ 1,

y ↦ 2}
↓
f↓y = ↓

f↓↑
f

1↓
f↘

2↓
h↙

x
↓3 ⊗{x↦ 3,

y ↦ 2}
1↓
g↓
y

2↘ 3↙ =
1↓
f↘

3↓
g↙

h↺↺Ð→2 ←Ð4

Figure 1: Different forms of composition: substitution, formation of a cycle, and transfer of
roots.

Example 1. Consider the last of the three examples in Figure 1, in which a drag D, whose
list of roots is R = [f hx] (identifying vertices with their label) is composed with a second drag
whose list of roots is R′ = [g y y], via the switchboard {x ↦ 3, y ↦ 2}. We calculate the target
of the two sprouts: xξ 3R′ y ξ 2Rh; hence ξ∗(x) = ξ∗(y) = h.

We are now ready for defining the composition of two drags. Its set of vertices will be the
union of two components: the internal vertices of both drags, and their sprouts which are not
in the domain of the switchboard. The labeling is inherited from that of the components.

Definition 4 (Composition). Let D = ⟨V,R,L,X,S⟩ and D′ = ⟨V ′,R′, L′,X ′, S′⟩ be drags
such that V ∩ V ′ = ∅, and let ξ be a switchboard for D,D′. Their composition is the drag
D ⊗ξ D′ = ⟨V ′′,R′′, L′′,X ′′, S′′⟩, with interface (R′′, S′′) denoted (R,S)⊗ξ (R′, S′), where

1. V ′′ = (V ∪ V ′) ∖Dom(ξ);
2. S′′ = (S ∪ S′) ∖Dom(ξ);
3. R′′ = ξ∗(R([1 .. ∣R∣] ∖ ξD′(Dom(ξD′)))) ∪ ξ∗(R′([1 .. ∣R′∣] ∖ ξD(Dom(ξD))));
4. L′′(v) = L(v) if v ∈ V ∩ V ′′; and L′′(v) = L′(v) if v ∈ V ′ ∩ V ′′;
5. X ′′(v) = ξ∗(X(v)) if v ∈ V ∖ S; and X ′′(v) = ξ∗(X ′(v)) if v ∈ V ′ ∖ S
If ⟨ξD, ξ⟩ is a rewriting extension of D′, then all roots and sprouts of D′ disappear in the

composed drag. The drag D can then be seen as the context of the left-hand side of a rule
D′ → R, where R must have the same number of roots as D′ (and Var(R) ⊆ Var(D′).)
Example 2. We show in Figure 1 three examples of compositions. The first is a substitution
of term. The second uses a bi-directional switchboard, which induces a cycle. In that example,
the remaining root is the first (red) root of the first drag which has two roots, the first red,
the other black. The third example shows how sprouts that are also roots connect to roots in
the composition (colors black and blue indicate roots’ origin, while red indicates a root that
disappears in the composition). Since x points at y and y at the second root of the first drag,
a cycle is created on the vertex of the resulting drag which is labelled by h. Further, the third
root of the first drag has become the second root of the result, while the first (resp., second)
root of the second drag has become the third (resp., fourth) root of the result. This agrees
of course with the definition, as shown by the following calculations (started in Example 1):
ξ∗([1,2,3]∖ [2]) = ξ∗([1,3]) = [f, h]; and ξ∗([1,2,3]∖ [2]) = ξ∗([1,2]) = [g, h], hence the list of
roots of the resulting drag is [f, h, g, h].

A clean linear drag all of whose vertices are its sprouts, whose set of edges is empty, and
whose list of roots is a list of its sprouts, is called an identity. We denote it by 1YX , where X is
its set of sprouts and Y is its list of roots. We use ∅ for the identity empty drag 1∅∅.

Composition has important algebraic properties, associativity and the above identities, that
play a key rôle in the construction of most general unifiers and its justification.
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3 Unification
The purpose of this section is to identify two clean drags U,V by composing them with the same
minimal rewriting context ⟨C, ξ⟩, resulting in the same drag W . An identification corresponds
to the fact that we want the same drag to be rewritten by two different rewrite rules whose
left-hand sides are U and V . In order for C ⊗ξ U and C ⊗ξ V to both make sense, we assume
that U,V are renamed apart (variables and root numbers).

Definition 5. Given drags U,V , we call partner vertices two lists LU , LV of equal length of
internal vertices of U and V , respectively, such that no two vertices u,u′ ∈ LU (resp., v, v′ ∈ LV )
are in relationship with XU (resp., XV ).

Definition 6. Two drags U,V are identified with a drag W at partner vertices (u, v) by an
injective function o ∶Ver(U) ∪ Ver(V )→ Ver(W ) called identification, written U[u]=oV [v], iff:

1. o(u) = o(v);
2. ∀w ∈ Ver(U),w′ ∈ Ver(V ) such that o(w) = o(w′), w ∶ f iff w′ ∶ f iff o(w) = o(w′) ∶ f ;
3. ∀w ∈ Ver(U),w′ ∈ Ver(V ) such that o(w) = o(w′), o(XU(w)) = o(XV (w)).
While two terms u, v are unified at their root, the solution being a substitution σ such that

uσ = vσ, two drags U,V are unified at partner vertices (u, v), the solution being an extension⟨C, ξ⟩ of both U and V that identifies C ⊗ξ U and C ⊗ξ V at these partner vertices:

Definition 7. A unification problem is a pair of clean drags (U,V ) that are renamed apart,
together with partner vertices P = {(u, v)}, which we write U[u] = V [v]. A solution (or unifier)
to the unification problem U[u] = V [v] is a clean rewriting extension ⟨C, ξ⟩ such that the overlap
drags C ⊗ξ U and C ⊗ξ V are identified at P . A unification problem U[u] = V [v] is solvable if
it has a solution.

Example 3. Let U = f(h(x)) and V = f(h(a)), in which U has two roots, f and h in this
order, and V has two roots h and f in this order. These roots are numbered 1,2,3,4. Let the
partner vertices be {(h,h)}. Then, the corresponding unification problem has for solution the
rewriting extension ⟨C, ξ⟩ such that C = a ⊕ f(y) ⊕ f(z), which has three roots, a, f, f in this
order, and ξ = {x↦ 1, y ↦ 4, z ↦ 2}. The overlap is the drag which has two roots labelled f and
f in this order with the drag h(a) being their common successor. Note that flipping the two
roots of V would give another solvable unification problem, since the predecessors of a vertex
are not ordered (unless they are also successors). Note also that the two root vertices of U
and V , which are both labelled by the same function symbol f , remain distinct in the obtained
overlap.

We want unification to be minimal, that is, to capture all possible extensions that identify
U and V , without useless identifications occuring above or below partner vertices.

Definition 8. We say that a drag U is an instance of a drag V , or that V subsumes U , and
write U ⪰ V , if there exists a clean context extension ⟨C, ξ⟩ such that U = C ⊗ξ V .

The (of course well-founded) subsumption quasi-order for drags, corresponds to encom-
passment of terms. On the other hand, its equivalence generalizes the case of terms, since
encompassment and subsumption for terms have the same equivalence.
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U ⊕ V
⎡⎢⎢⎢⎢⎢⎣

u ∶ f ⋅ i↙ ↘
s1 . . . sn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

v ∶ f ⋅ i↙ ↘
t1 . . . tn

⎤⎥⎥⎥⎥⎥⎦
Propagate ⇒

U ⊕ V
⎡⎢⎢⎢⎢⎢⎣

f ⋅ i↙ ↘
s1 ⋅ c + 1 . . . sn ⋅ c + n

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

f ⋅ i↙ ↘
t1 ⋅ c + 1 . . . tn ⋅ c + n

⎤⎥⎥⎥⎥⎥⎦
Variable case U ⊕ V [s ∶ x ⋅ c][u ∶ f ⋅ c] ⇒ U ⊕ V [s ∶ x ⋅ c][u ∶ f ⋅ c]
Merge U ⊕ V [s ∶ x][t ∶ x] ⇒ U ⊕ V [s ⋅ c + 1][t ⋅ c + 1]
Transitivity U ⊕ V [u ⋅ i ⋅ j][v ⋅ i][w ⋅ j] ⇒ U ⊕ V [v ⋅ c + 1][w ⋅ c + 1]
Symbol conflict U ⊕ V [u ∶ f ⋅ i][v ∶ g ⋅ i] ⇒ � if f ≠ g
Internal conflict U ⊕ V [u ⋅ i][v ⋅ i] ⇒ �

if internal vertices u, v belong both either to U or to V

Occur check
U ⊕ V [s1 ∶ x1 ⋅ i1][w1 ⋅ i1] . . . [sn ∶ xn ⋅ in][wn ⋅ in] ⇒ �

if
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀i ∈ [1..n] si is a sprout and wi is an internal vertex∀i ∈ [1..n] si+1 (convention: sn+1 = s1) is accessible from wi∃i ∈ [1..n] wi is not rooted

Figure 2: Drag unification rules

3.1 Unification algorithm

The unification algorithm is described by a set of transformation rules operating on the drag
U ⊕V . We single out a vertex w in the drag U⊕V by writing U⊕V [w], a notation that extends
as expected to several vertices that are pairwise different.

Identifying C ⊗ξ U and C ⊗ξ V at a pair of vertices (u, v) requires that u and v have the
same label, and that the property can be recursively propagated to their corresponding pairs of
successors. To organize the propagation, the initial partner vertices will hold marks 1, . . . ∣u∣).
Assuming now that the the pair (u, v) is marked with a red natural number, propagation will
turn this mark into blue, while marking the pairs of succesors with fresh red marks. In case
one of u, v is a sprout, no propagation occurs, it is enough to turn the red mark into blue.
Our syntax for marking a vertex is as in u ∶ f ⋅ i1⋯in if u has label f and (blue or red) marks
i1, . . . , in. Vertex u, label f or marks may be omitted when convenient.

Propagation stops when there are no more pairs of internal vertices holding a red mark,
unless two marked sprouts hold the same variable, in which case they must be marked red.

We call c the number of already used marks, initialized to 0, and incremented by one at each
use of a mark, including the initial marking of the partner vertices. The rules are reminiscent
from the unification rules for terms, although we don’t use the same rule names except for
Merge and Occur check. For example, we use Propagate rather than Decompose to stress the
fact that drags cannot be treated as terms.

The procedure described at Figure 2 computes an equivalence relation between the vertices
of two drags to be unified from which their most general unifier will be extracted. It consists in
a set of transformation rules operating on the unification problem U =V (actually, on the drag
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U⊕V ) by marking pairs of vertices with elements of an initial segment of the natural numbers,
figuring out new edges of a specific kind between vertices of U ⊕ V , in the style of Patterson
and Wegman unification algorithm, as well as Huet’s.

Example 4. In our example of Figure 3, unification of the initial two drags proceeds in eleven
steps. Propagation steps are labelled by the red mark processed while Transitivity steps are
labelled by the generated mark. This explains why some steps have the same label.

Soundness of these rules is based on the notion of generated equivalence between the vertices
of the generated drag, which corresponds to a congruence on terms. Completeness requires
specific generated equivalences, called solved form which allow an occur-check, that is a vertex
v marked n accessible from some vertex u marked n, iff u is rooted.

Example 5 (Continued). Figure 4 shows the context drag, switchboard, and overlapping drag
obtained by composition of the inputs drags of Figure 3. The equivalence on vertices considered
here is defined by having equal markings, which is in solved form. Note that the resulting drag
has two roots. Unifying at vertices (r ∶1, r ∶2) instead would give a single root.

Theorem 1. Unification is unitary, and has quadratic worst case complexity.

References
[1] Nachum Dershowitz and Jean-Pierre Jouannaud. Drags: A compositional algebraic framework for

graph rewriting. Theor. Comput. Sci., 777:204–231, 2019.
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r:1↘ r:2↙
g1↓
h↙PPq

zf↙
x qig

=
r:3↓g1

hU
K
↓
f
←Ð r:4

↙
a
↘
g↓
y

1⇒ ↘↙
g1↓
h2↙PPq

zf↙
x qig

= ↓
g1

h2U K
↓
f
←Ð

↙
a
↘
g↓
y

2⇒ ↘↙
g1↓
h2↙PPq

z4f3↙
x qig

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a
↘
g↓
y

3⇒

↘↙
g1↓
h2↙PPq

z4f3↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a5
↘
g6↓
y

4⇒ ↘↙
g1↓
h2↙PPq

z4f3↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a5
↘
g6↓
y

5⇒ ↘↙
g1↓
h2↙PPq

z4f3↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a5
↘
g6↓
y

6⇒

↘↙
g1↓
h2↙PPq

z4f3⋅7↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a5
↘
g6↓
y7

7⇒ ↘↙
g1↓
h2↙PPq

z4f3⋅7↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a5
↘
g6↓
y7

8⇒ ↘↙
g1⋅8↓
h2↙PPq

z4⋅8f3⋅7↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a5
↘
g6↓
y7

8⇒

↘↙
g1⋅8↓
h2↙PPq

z4⋅8f3⋅7↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3↙

a5
↘
g6↓
y7

9⇒ ↘↙
g1⋅8↓
h2↙PPq

z4⋅8f3⋅7↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3⋅9↙

a5
↘
g6↓
y7⋅9

9⇒ ↘↙
g1⋅8↓
h2↙PPq

z4⋅8f3⋅7↙
x5

qig6

= ↓
g1⋅4
h 2U K
↓
f
←Ð
3⋅9↙

a5
↘
g6↓
y7⋅9

●

Figure 3: Successful unification of two patterns.

r:1 r:2↘↙
g1⋅8↓
h2↙PPq

z4⋅8f3⋅7↙
x5

qig6

⊗{x↦ 1,
z ↦ 2,
z′ ↦ 2,
y ↦ 3,
y′ ↦ 4}

1↓
a

2↓
z’

3↓
y’ = r:1 r:3↘↙

g

hU
K
↓
f↙

a qig

= r:3↓
g1⋅4
h 2U K

↓ r:4
f
←Ð
3⋅9↙

a5
↘
g6↓
y7⋅9

⊗{x↦ 1,
z ↦ 2,
z′ ↦ 2,
y ↦ 3
y′ ↦ 4}

1↓
a

2↓
z’

3↓
y’

Figure 4: Most general unifying extension
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Abstract

Proximity relations are binary fuzzy relations, which are reflexive and symmetric, but
not transitive. They can thus define distances between symbols and, by extension, to
terms. We propose an algorithm that finds all the substitutions that bring close to each
other two terms whose signatures tolerate mismatches in function symbol names, arity,
and in the arguments order (so called full fuzzy signatures). This work generalizes on
the one hand, proximity-based unification to full fuzzy signatures, and on the other hand,
similarity-based unification over a full fuzzy signature by extending similarity to proximity.

1 Introduction

The classical unification fails when there is no match between two corresponding function
symbols of the terms to be unified. While in most situations this is the desired outcome, there
are cases when some tolerance regarding the mismatches would offer a better result. The type
of the accepted differences can vary, and some mismatches were already explored in previous
researches.

Mismatch between symbol names under similarity and proximity. The work of Sessa [8]
covers the case of unification with similar symbols with the same arity, where similarity is
a fuzzy equivalence relation. Julián-Iranzo and Rubio-Manzano [3–5] consider a proximity
(fuzzy reflexive, symmetric, non-transitive) relation between symbols of the same arity, with
the restriction that once a symbol is considered as being a neighbor to another symbol, it cannot
become a proximal candidate in a different neighborhood class. We treated the unrestricted
proximity unification with mismatches between same arity symbols in [7].

Mismatch between symbol names and arities under similarity. Aı̈t-Kaci and Pasi [1] explored
unification in a class of similarity relations over symbols with different arities, by introducing
injective mappings between the arguments of the similar functions, specifying which argument
pairs should be considered similar. The mappings are defined over all the arguments of the
symbol with the smaller arity.

In this paper we generalize the previous contributions by considering proximity relations
over function symbols with different arity, while also extending the parameters mismatches to
allow mappings on subsets of arguments. Hence, we allow mismatch between symbol names
and arities under unrestricted proximity.

2 Preliminaries

Proximity relations. We define the basic notions about proximity relations according to [3].
Given a set S, a mapping from S × S to the real interval [0, 1] is called a binary fuzzy relation
on S. By fixing a number λ, 0 ≤ λ ≤ 1, we can define the crisp counterpart of R, named the
λ-cut of R on S, as Rλ := {(s1, s2) | R(s1, s1) ≥ λ}. We take the minimum as the T-norm ∧.
A proximity relation on a set S is a reflexive and symmetric fuzzy relation R on S.
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Terms and substitutions. We consider first-order terms defined as usual: t := x |
f(t1, . . . , tn), where x ∈ V is a variable and f ∈ F is an n-ary function symbol with n ≥ 0.
We denote arbitrary function symbols by f, g, h, constants by a, b, c, variables by x, y, z, v, and
terms by s, t, r. The head of a term is defined as head(x) := x and head(f(t1, . . . , tn)) := f .
For a term t, we denote with var(t) the set of all variables appearing in t.

A substitution is a mapping from variables to terms, which is the identity almost everywhere.
We use the Greek letters σ, ϑ, ϕ to denote substitutions, except for the identity substitution
which is written as Id . We represent substitutions with the usual set notation. The restriction
of a substitution σ on a set of variables V is denoted by σ|V and defined in the usual way. The
notion of more generality for substitutions is defined with the help of syntactic equality: σ is
more general than ϑ, written σ � ϑ, if there exists ϕ such that σϕ = ϑ.1

Position mappings. Given two sets {1, . . . , n} and {1, . . . ,m}, a position mapping is an
injective function π : In 7→ Im, where In ⊆ {1, . . . , n}, Im ⊆ {1, . . . ,m} and |In| = |Im|.
Note that it can be also the empty mapping: π : ∅ 7→ ∅. Usually, for π : In 7→ Im we write
π = {i 7→ π(i) | i ∈ In}.

Given a proximity relation R over F , we assume that to any pair of function symbols f and
g with R(f, g) = λ > 0, there is an attached position mapping π such that if f is n-ary and g
is m-ary, then π is a mapping from {1, . . . , n} to {1, . . . ,m}. (π is the identity if f = g, and is
the empty mapping if f or g is a constant.) We use the notation f ∼π

R,λ g.

Proximity relations over terms. Each proximity relation R considered in this paper is
defined on F ∪ V such that R(f, x) = 0 for all f ∈ F and x ∈ V, and R(x, y) = 0 for all x 6= y,
and x, y ∈ V.

We extend such an R to terms as follows: (i) R(s, t) := 0 if R(head(s), head(t)) = 0; (ii)
R(s, t) := 1 if s = t and s, t ∈ V; (iii) R(s, t) := R(f, g) ∧ R(si1 , tj1) ∧ · · · ∧ R(sik , tjk), if
s = f(s1, . . . , sn), t = g(t1, . . . , tm), f ∼π

R,λ g, and π = {i1 7→ j1, . . . , ik 7→ jk}.

Unification problems, unifiers. We write (R, λ)-equations between terms as t '?
R,λ s,

with the question mark indicating that they are supposed to be solved (i.e., the terms t and s
to be (R, λ)-unified). A solution (a unifier) of such an equation is a substitution σ such that
tσ 'R,λ sσ. We say that R(tσ, sσ) ≥ λ is the approximation degree of (R, λ)-unifying t and s
by σ (or, equivalently, the approximation degree of solving t '?

R,λ s by σ).
An (R, λ)-unification problem (or, briefly, a unification problem) is a finite set of (R, λ)-

equations. A solution (unifier) of a unification problem P is a substitution that solves all
the equations in P . The approximation degree of the unification of P by σ is obtained by
∧eq∈P deg(eqσ), where deg(eqσ) is the approximation degree of solving eq ∈ P by σ.

3 Unification rules

The unification rules work on triples P ;σ;α, called configurations, where P is a unification
problem, σ is a substitution computed so far, and α is the approximation degree, also computed
so far. The symbol ⊥ is a special configuration. The rules transform configurations into
configurations (R and λ are assumed to be given):

1Note that we did not use proximity in the definition of more generality, in order to guarantee that � is a
quasi-order, preserving good properties of unifiers. See Remark 1 in [7].
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Tri: Trivial

{x '?
R,λ x} ] P ;σ;α =⇒ P ;σ;α.

Dec: Decomposition

{f(t1, . . . , tn) '?
R,λ g(s1, . . . , sm)} ] P ;σ;α =⇒ P ∪ {ti1 '?

R,λ sj1 , . . . , tik '?
R,λ sjk};σ;α ∧ β,

if f ∼π
R,λ g with π = {i1 7→ j1, . . . , ik 7→ jk} and R(f, g) = β ≥ λ, n,m, k ≥ 0.

Cla: Clash

{f(t1, . . . , tn) '?
R,λ g(s1, . . . , sm)} ] P ;σ;α =⇒ ⊥, if R(f, g) < λ.

Ori: Orient

{t '?
R,λ x} ] P ;σ;α =⇒ P ∪ {x '?

R,λ t};σ;α, if t is not variable.

Occ: Occurrence check

{x '?
R,λ g(s1, . . . , sn)} ] P ;σ;α =⇒ ⊥,

if for each f ∼π
R,λ g, there exists i 7→ j ∈ π such that x ∈ var(sj).

Var-E: Variable elimination

{x '?
R,λ g(s1, . . . , sn)} ] P ;σ;α =⇒

(
P ∪ {x '?

R,λ g(s1, . . . , sn)}
)
ϑ;σϑ;α,

where n ≥ 0, f ∼π
R,λ g, f is m-ary, ϑ = {x 7→ f(v1, . . . , vm)} where v1, . . . , vm are fresh

variables, and for each i 7→ j ∈ π we have x /∈ var(sj).

Given a unification problem P , we create the initial system P ; Id ; 1 and start applying the
unification rules in all possible ways, generating a complete tree of derivations in the standard
way. The Var-E rule causes branching, since there can be multiple f ’s satisfying the condition
there. No rule applies to ⊥ (indicating failure) or to a configuration of the form {x1 '?

R,λ
v1, . . . , xn '?

R,λ vn};σ;α, n ≥ 0, called variables-only configuration. In the latter case we
say that α is the computed approximation degree, σ|var(P ) is the computed substitution and

{x1 '?
R,λ v1, . . . , xn '?

R,λ vn} is the computed constraint. We denote the obtained unification
algorithm by U .

In the examples below it is assumed that R(sym1, sym2) = 0 for any pair of symbols sym1

and sym2 except those for which the proximity is explicitly given.

Example 1. Let f be a binary function symbol with f ∼{17→1}
R,0.6 g, f ∼{27→1}

R,0.7 h, and a, b, c be con-
stants such that b ∼R,0.4 c. Let the unification problem be P = {f(x, x) 'R,0.4 f(g(a), h(c))}.
Then the algorithm U starts with decomposition:

{f(x, x) '?
R,0.4 f(g(a), h(c))}; Id ; 1 =⇒Dec

{x '?
R,0.4 g(a), x '?

R,0.4 h(c)}; Id ; 1.

From here there are two ways to proceed by Var-E on x '?
R,0.4 g(a): by choosing the variable

eliminating substitution either {x 7→ g(v)} or {x 7→ f(v1, v2)}. The former one leads to failure,
since R(g, h) = 0. Therefore, we show here only the second derivation:

{x '?
R,0.4 g(a), x '?

R,0.4 h(c)}; Id ; 1 =⇒Var-E

{f(v1, v2) '?
R,0.4 g(a), f(v1, v2) '?

R,0.4 h(c)}; {x 7→ f(v1, v2)}; 1 =⇒Dec
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{v1 '?
R,0.4 a, f(v1, v2) '?

R,0.4 h(c)}; {x 7→ f(v1, v2)}; 0.6 =⇒Var-E, Dec

{f(a, v2) '?
R,0.4 h(c)}; {x 7→ f(a, v2), v1 7→ a}; 0.6 =⇒Dec

{v2 '?
R,0.4 c}; {x 7→ f(a, v2), v1 7→ a}; 0.6.

Here we have two alternatives by Var-E, both leading to success. The first alternative
chooses {v2 7→ b} and gives the final configuration ∅; {x 7→ f(a, b), v1 7→ a, v2 7→ b}; 0.4.
The substitution computed in this derivation is σ1 = {x 7→ f(a, b)}. It solves P , because
f(f(a, b), f(a, b)) 'R,0.4 f(g(a), h(c)).

The other alternative is to take {v2 7→ c}. In this branch we get σ2 = {x 7→ f(a, c)} and
α = 0.6. It also solves P , because f(f(a, c), f(a, c)) 'R,0.4 f(g(a), h(c)).

If we took the λ = 0.6, then σ2 would be the only solution of P . For λ > 0.6, there would
be no solution.

The previous example is, in fact, a matching problem since variables did not appear in the
right side. As we saw, the computed constraint was empty. Now we consider a case when
variables appear in both sides.

Example 2. Let f, g, h, a, b, c be as in Example 1 and consider the problem P = {f(x, x) '?
R,0.4

f(g(y), h(z))}. Then the algorithm stops with the final configuration S;σ;α where S =
{v1 '?

R,0.4 y, v2 '?
R,0.4 z}, σ = {x 7→ f(v1, v2)}, and α = 0.6. For illustration, we take

three unifiers of P : ϑ1, ϑ2, and ϑ3 together with their approximation degrees and show how
they can be obtained from S;σ:

1. • ϑ1 = {x 7→ f(y, z)} and the approximation degree β = 0.6.

• The instance of S;σ under ϕ = {v1 7→ y, v2 7→ z}: Sϕ = {y '?
R,0.4 y, z '?

R,0.4 z}
and σϕ = {x 7→ f(y, z), v1 7→ y, v2 7→ z}.

• Sϕ is solved, and (σϕ)|var(P ) = ϑ1. Besides, α ≥ β.

2. • ϑ2 = {x 7→ f(a, b), y 7→ a, z 7→ b} and the approximation degree β = 0.6.

• The instance of S;σ under ϕ = {v1 7→ a, v2 7→ b, y 7→ a, z 7→ b}: Sϕ = {a '?
R,0.4 a,

b '?
R,0.4 b} and σϕ = {x 7→ f(a, b), v1 7→ a, v2 7→ b, y 7→ a, z 7→ b}.

• Sϕ is solved, and (σϕ)|var(P ) = ϑ2. Besides, α ≥ β.

3. • ϑ3 = {x 7→ f(a, c), y 7→ a, z 7→ b} and the approximation degree β = 0.4.

• Instance of S;σ under ϕ = {v1 7→ a, v2 7→ c, y 7→ a, z 7→ b}: Sϕ = {a '?
R,0.4 a,

c '?
R,0.4 b} and σϕ = {x 7→ f(a, c), v1 7→ a, v2 7→ c, y 7→ a, z 7→ b}.

• Sϕ is solved, and (σϕ)|var(P ) = ϑ3. Besides, α ≥ β.

This example explains why the algorithm stops at variables-only configuration. If it went
further from S;σ;α in the usual way, eliminating v1 and v2 by the substitution {v1 7→ y, v2 7→ z},
we would end up with the final configuration ∅; {x 7→ f(y, z), v1 7→ y, v2 7→ z}, but the computed
substitution {x 7→ f(y, z)} would not be more general than the unifier ϑ3. (Recall that more
generality is defined by syntactic equality, not by proximity.)

Example 3. This example shows why we can not simply have x ∈ var(g(s1, . . . , sn)) in the
condition of Occ. Assume f and g are as in Example 2. Then {x '?

R,0.4 f(a, x)} has a unifier
{x 7→ g(a)}. If Occ is applied to this problem, we would get ⊥ and, hence, would lose solutions.

Below we state the properties of the algorithm U .
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Theorem 1. U terminates for any input.

Theorem 2. Let P ; Id ; 1 =⇒∗ S;σ;α be a derivation in U , and ϕ be a (R, λ)-unifier of S with
the approximation degree β. Then σϕ is a (R, λ)-unifier of P with the approx. degree α ∧ β.

Theorem 3. Let P be a (R, λ)-unification problem and ϑ be its unifier with the approximation
degree β. Then there exists a derivation P ; Id ; 1 =⇒∗ S;σ;α in U with α ≥ β and a unifier ϕ
of S such that (σϕ)|var(P ) = ϑ|var(P ).

The NP-hardness of the decision problem of (R, λ)-unifiability with arity mismatch can be
shown by reduction from positive 1-in-3-SAT. Let π1 = {1 7→ 1, 2 7→ 2, 3 7→ 3}, π2 = {1 7→ 3,
2 7→ 1, 3 7→ 2}, π3 = {1 7→ 2, 2 7→ 3, 3 7→ 1}, hi 'π1

R,λ f , hi 'πi

R,λ g for 1 ≤ i ≤ 3. Then

each positive 3-SAT clause x1 ∨ x2 ∨ x3 can be encoded as two proximity equations y '?
R,λ

f(x1, x2, x3), and y '?
R,λ g(1, 0, 0), where 1 and 0 are constants. Their unifiers force exactly

one x to be mapped to 1, and the other two to 0 ({y 7→ h1(1, 0, 0), x1 7→ 1, x2 7→ 0, x3 7→ 0},
{y 7→ h2(0, 1, 0), x1 7→ 0, x2 7→ 1, x3 7→ 0}, and {y 7→ h3(0, 0, 1), x1 7→ 0, x2 7→ 0, x3 7→ 1}). The
reduction is polynomial and preserves solvability in both directions.

Reducing nondeterminism. The Var-E rule blindly chooses f from the proximity class of
g. Eventually, the whole class will be explored. If x appears nowhere else except the equation
transformed by Var-E, then this approach is reasonable as it generates all necessary unifiers.
However, if there is another occurrence of x, it may happen that some of those f ’s do not lead
to success. In such cases, we can cut the number of alternatives doing more informed selection.

The idea is simple: (1) postpone variable elimination as much as possible; (2) when all
equations have a variable in the left hand side, collect all those with the same variable in the
left and a non-variable terms in the right; (3) apply variable elimination only with those f ’s
that belong to the intersection of proximity classes of the head symbols in the right hand side.
Hence, the modified Var-E rule will have the form

Var-E-Mod: Variable elimination modified

{x '?
R,λ g1(s11, . . . , s

1
k1

), . . . , x ' gn(sn1 , . . . , s
n
kn

)} ] P ;σ;α =⇒(
P ∪ {x '?

R,λ g1(s11, . . . , s
1
k1

), . . . , x ' gn(sn1 , . . . , s
n
kn

)}
)
ϑ;σϑ;α,

where n ≥ 1, ki ≥ 0 for all 1 ≤ i ≤ n, P does not contain an equation of the form x '?
R,λ g(s̃),

ϑ = {x 7→ f(v1, . . . , vm)} where v1, . . . , vm are fresh variables and f ∼π1

R,λ g1, . . . , f ∼πn

R,λ gn,

and for each 1 ≤ l ≤ n, if i 7→ j ∈ πl, then x /∈ var(slj).

4 Concluding remarks

The problem considered in this paper generalizes proximity-based unification [7] and match-
ing [6], permitting arity mismatch between symbols (in addition to mismatches between symbol
names of the same arities). It also generalizes similarity-based unification where such a mis-
match has been studied, see [2], since similarity is a special case of proximity.

In [7], we proposed an algorithm to solve proximity equations. In our opinion, that was
an elegant two-staged approach. In the first stage, unification rules are applied which either
leads to failure or returns neighborhood (proximity class) constraints, which are solved in the
second stage. For the problem studied in this paper, such a separation of the algorithm into
two stages is quite challenging, since we need a concrete element of a proximity class to perform
decomposition. This is an interesting issue we would like to look into in more detail.
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1 Introduction

A relatively new and promising direction in generating secure cryptosystems is to synthesize and
verify them automatically. Generally, the cryptosystems are first generated, and then symbolic
techniques that have been proven sound and/or complete with respect to cryptographic security
are applied, in order to identify secure cryptosystems and/or weed out insecure ones. (See for
example [3, 7]). In this work we apply a technique we are developing for the synthesis of
cryptographic modes of operation, that is, algorithms that use block ciphers, cryptosystems
that, given a plaintext block of fixed length η, return an η-length block of ciphertext. In this
approach we analyze the synthesized cryptographic algorithms via a type of protocol modeling
the interaction between an adversary and an encryptor/oracle. We denote these protocols as
Cryptographic Modes of Operation programs or MOO-programs for short. In this model the
adversary sends messages to the oracle which then encrypts those messages according to some
pre-determined method. In cases that there are choices as to action the oracle can take, that
choice is made by the adversary. The encrypted blocks are then sent back to the adversary
based on some schedule. As shown in [6, 9], both the encryption method and the schedule are
relevant to the security of the cryptosystem. One can then reduce certain security questions
about the cryptographic algorithm to the question as to whether the adversary can identify a
set of ciphertext blocks such that it can force the oracle to return instantiations of the blocks
whose ⊕ sum to 0, under the assumption that the adversary is not able to compute the block
cipher function itself. We are therefore interested in the class of algorithmic questions that
ask whether there exists an algorithm to decide if, given a MOO-program with a particular
schedule, can the adversary force the cryptosystem to produce cipher blocks that are equal
modulo some theory. The most basic form of this question, where the numeric length and
number of independent protocol interactions is finitely bounded, and the ciphertext terms are
rooted in the encryption symbol, has been proven decidable for the xor-equational theory [8].
Here we investigate some of the remaining cases for that theory.

A related algorithmic question asks if given a MOO-term and assuming that the block
encryption function can be inverted (decrypted), can one unwind the encryption and other
function applications to retrieve the original message. This “invertibility” property of course
is a requirement for any useful encryption algorithm. We investigate the following algorithmic
question of given a MOO-program: is there an algorithm that will decide if the cipher blocks
are invertible?

2 Preliminaries

We assume the reader is familiar with equational unification and term rewriting systems [2].
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In this paper we will primarily be concerned with the equational theory of xor, Exor =
R⊕ ∪ E⊕, where R⊕ = {x ⊕ x → 0, x ⊕ 0 → x} and E⊕ = AC(⊕) over the signature,
Σ⊕ = {⊕, f, 0}.

MOO-Program: This describes an interaction between the adversary and the oracle in
which the adversary sends blocks of plaintext to be encrypted and the oracle sends back blocks
of ciphertext according to some fixed schedule defined by the mode of operation. Messages with
multiple blocks are encrypted block by block. In a block-wise schedule an encrypted block is sent
to the adversary immediately after it is generated by the oracle. In a message-wise schedule, all
the encrypted blocks are sent to the adversary after the entire message is encrypted. The blocks
sent between the adversary and the oracle are modeled by terms. These MOO⊕-terms can be 0,
variables representing plain-text blocks, bounded variables representing a random string, or any
term built up using the signature Σ = {⊕, 0, f}. The terms of the frame are further restricted
depending on the method of encryption being modeled. The method of encryption dictates
how the oracle constructs cipher blocks. For example, in Cipher Block Chaining, CBC, the ith

cipher block, Ci, is modeled by f(Ci−1⊕xi), where xi is the ith plaintext sent by the adversary.
A MOO-Program will be modeled by a list of MOO⊕-terms of the form [t1, t2, . . . , tn].

All MOO⊕-terms are listed in the order that they are sent. For example, the following MOO-
Program models the CBC mode of encryption with three cipher blocks using the block-wise
schedule. [IV, x1, f(IV ⊕x1), x2, f(x2⊕f(IV ⊕x1))]. Here IV is a bound variable representing
an initial nonce. Each xi models a plain-text block sent by the adversary and each f -rooted
term is a cipher block returned by the oracle.

Each MOO-Program models a single session between the adversary and oracle, where a
session is a program that encrypts a single message consisting of a sequence of plaintext blocks.
The adversary has the ability to execute multiple simultaneous sessions with the oracle. In this
case the initial nonces, the IV , will be fresh for each session. Each session can then be modeled
by its own list of terms or MOO-Program.

We are interested in the problem of deciding if the adversary is able to find two or more
ground cipher blocks C1, . . . , Ck whose ⊕ sum is zero. We can define several instances of
the problem based on the combination of the following factors: The equational theory E, the
method of encryption, the schedule, and bounds on the session length and number of sessions.

3 Decision Problems on Detecting Possible Collisions

Here we are interested in whether the problem of identifying sets of ciphertext blocks summing
to zero will turn undecidable if we release the boundedness condition on either the number of
sessions or their lengths.

3.1 Non-deterministic Decision Problem in Unbounded Sessions

In this section we prove that the non-deterministic version of the decision problem for MOO-
programs of unbounded session lengths and bounded number of sessions is undecidable. Here,
non-deterministic means that more than one encryption method is available to the oracle, and
the choice of which one is used is made by the adversary.

Definition 1. Let α be a string a0a1 . . . am and C be a block. Then, F (α
⊕
C) = f(a0⊕f(a1⊕

. . . f(am ⊕ C) . . .)).

The cipher block construction below encodes possible solutions to the Post Correspondence
Problem (PCP).
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Definition 2. Let Γ be an alphabet s.t., Γ = {a, b}. The PCP consists of a finite list of blocks,

(
α1

β1

)
,

(
α2

β2

)
, . . . ,

(
αn
βn

)

Each αi and βi is a word over Γ. A solution to the PCP is a sequence of indices ij , 1 ≤ j ≤
M , where M > 1 and 1 ≤ ij ≤ n such that αi1αi2 . . . αiM = βi1βi2 . . . βiM

The PCP is a classical undecidable problem. We use to define how cipher block terms are
constructed by the oracle.

Definition 3. Let PCP = (α0

β0
), (α1

β1
), . . . , (αn

βn
), and Ci the ith cipher block output.

For i > 0 let Ci = Ei0 or, Ei2 , or . . ., or Ein where Eij = [f(ri ⊕ Ci,1), f(ri ⊕ Ci,2)], 0 ≤
j ≤ n, Ci,1 = F (αj

⊕
Ci−1,1), Ci,2 = F (βj

⊕
Ci−1,2) C0,1 = F (αj

⊕
0), C0,2 = F (βj

⊕
0).

Based on the non-deterministic system of Definition 3 we can define the following MOO-
program which produces two equal cipher blocks iff the adversary finds a solution to the PCP.

Definition 4. Denote the following MOO-program as PCPNDMOO1 . The program works as
follows: The adversary non-deterministically picks a possible solution to the PCP, i0, i1, i2, . . . , ik.
Each turn the adversary sends an index in the solution, starting with ik and proceeding each
turn until i0 is reached. At each step the oracle encodes a pair of cipher blocks Ej, according to
Definition 3 and returns them to the adversary. After receiving each Ej, the adversary attempts
to check if any two cipher blocks are equal. The program stops if the adversary finds two equal
pairs or it sends a stop session command.

Lemma 1. Given a PCP problem the corresponding PCPNDMOO1 program produces a set of
cipher blocks whose ⊕ sum is zero iff there is a solution to the given PCP.

Proof Sketch Assume there is a set of cipher blocks whose ⊕ sum is zero. Since all cipher
blocks are rooted in the free function symbol f , this can only be the case if the program returns
two equal cipher blocks. In addition, due to the random ri only blocks from the same step, Ci,1
and Ci,2 can sum to zero. The encoding of the PCP solution follows from Definition 3. Assume
there is a solution to the PCP. Let i1, i2, . . . , im be the solution. Notice that during the mth

step the blocks Cm,1 and Cm,2 will fully encode this solution. Thus both the encoded strings
and the unique random nonces will be equal, leading to a zero sum.

Example 1. Consider the following PCP:

block 1︷ ︸︸ ︷(
ba

baa

)
,

block 2︷ ︸︸ ︷(
ab

ba

)
,

block 3︷ ︸︸ ︷(
aaa

aa

)
. A solution to this prob-

lem is 1, 3. Let’s trace a run of the PCPNDMOO1
program where the adversary guesses the

solution 1, 3. In the first step the adversary sends the number 3 to the oracle and receives
the following cipher block in return. C0 = E03 where E03 = [f(r0 ⊕ C0,1), f(r0 ⊕ C0,2)],
C0,1 = F (α3

⊕
0) = (f(a ⊕ f(a ⊕ f(a ⊕ 0)))), C0,2 = F (β3

⊕
0) = f(a ⊕ f(a ⊕ 0)) Notice

that now after step 2 the adversary has two cipher blocks, C1,1 and C1,2, which are equal.
C1,1 = f(b⊕ f(a⊕ f(a⊕ f(a⊕ f(a⊕ 0))))), C1,2 = f(b⊕ f(a⊕ f(a⊕ f(a⊕ f(a⊕ 0)))))

Theorem 1. Assume M is an arbitrary non-deterministic MOO-program. The problem of
determining if M , executing with a bounded number of sessions and unbounded session lengths,
ever produces two equal cipher blocks is undecidable.
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3.2 Additional Undecidability Results

Due to space several additional undecidability results are not included but can be proven using
a similar reduction. These cases include deterministic unbounded session length, both deter-
ministic and non-deterministic unbounded number of sessions with bounded session length.

4 The Invertibility Problem

A natural requirement of any cryptographic algorithm is that it be invertible; that is, one can
find the original plaintext using the ciphertext and decryption key. In the case of modes of
encryption that leads to two different questions. The first is, given a set S of MOO-terms
with subterms designated as plain text, can we tell if S is invertible? The second is: given a
MOO-program, can we tell if the projection of any MOO frame on to the oracle is invertible?
The second question is our ultimate goal, but to answer it we need to answer the first. We
present an answer to the first, and we are currently working on answering the second.

Let C = {C0, C1, . . . , Cn} represent the cipher blocks, Ci, produced by the oracle in the
MOO-program. We instantiate the variables representing plaintext in C to constants pi. Let
P = {p0, p1, . . . , pn} be the set representing the plaintext messages during a run of the MOO-
program. We first define an invertibility relation, φ `E p, s.t. p ∈ P , axiomatized by a set
of inference rules introducing a new symbol, f−1. f is the symbolic encryption function, i.e.,
f = enc( ,K), for some key K, and let the model decryption function f−1 = dec( ,K), s.t.
f−1(f(p)) = p. In this case the set of rules axiomatizing the invertibility problem are exactly
those axiomatizing the deduction problem [1, 4]. The deduction problem is undecidable in
general, but is decidable for some theories (see for example [1,4]). Thus, it allows us to obtain
a general decidability result for the theory of interest.

4.1 General Invertibility

Here we limit our investigation to signature Σ = {⊕, 0, f, f−1} and MOO-programs over this
signature. The equational theories can be presented as a combination. R⊕ = {x ⊕ x →
0, x ⊕ 0 → x}, Rf = {f(f−1(x)) → x, f−1(f(x)) → x}, E⊕ = AC(⊕). We are interested in
the invertibility problem for the theory E−1 = Rf ∪ R⊕ ∪ E⊕. Note that f−1 is not always
necessary to obtain invertibility but is if the plain-text appears below an f .

First consider the deduction problem for R⊕∪E⊕, shown decidable in [1]. Furthermore, the
theory Rf is subterm convergent, each rule’s right-hand side is a subterm of the left-hand side,
and thus the deduction problem is also decidable due to [5]. Therefore we have the following.

Lemma 2. ( [1, 5]) The deduction problem is decidable in both R⊕ ∪ E⊕ and Rf .

We now consider the combination problem for the disjoint combination theory Rf ∪ (R⊕ ∪
E⊕). From the disjoint combination result of [4] we get the following.

Lemma 3. The deduction problem is decidable in the theory Rf ∪ (R⊕ ∪ E⊕).

Corollary 1. The invertibility problem for the theory Rf ∪ (R⊕ ∪ E⊕) is decidable.

While we know that an algorithm exists for solving the invertibility problem for the theory
Rf ∪ (R⊕ ∪ E⊕), a more efficient algorithm is possible, taking advantages of the properties of
MOO-programs. The first step is to compute a set representing the knowledge of the adversary.
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Definition 5. Let C = {C0, C1, . . . , Cm} be the set of cipher-blocks from a MOO-program. Let
N denote any initial nonces, random strings, known by the adversary, and let K = range(C)∪N
Let S = max{|t|, s.t. t ∈ C}. The set of saturated knowledge, K∗, is computed as follows:

1. Initially K∗ = K.

2. Three closure operations are applied until there is no change to the set K∗:

(a) If t ∈ K∗, t(ε) = f , f−1(t)→ t′, then K∗ = K∗ ∪ {t′}.
(b) If t1, t2 ∈ K∗, t1 ⊕ t2 = t′, and |t′| ≤ S then K∗ = K∗ ∪ {t′}.
(c) If t ∈ K∗, and |f(t)| ≤ S then K∗ = K∗ ∪ {f(t)}.

We now present the invertibility algorithm in Algorithm 1.

Algorithm 1 Invertibility for MOO⊕ terms

Require: Set K, a plain-text goal p, and a set Kp ⊆ K of terms containing p as a subterm.
if Kp = ∅ then

Exit with Failure.
else

Compute K∗

end if
if p ∈ K∗ ∨ ∃t ∈ K∗ s.t. t =Rf∪R⊕∪E⊕ p then

Return success.
else

Exit with Failure
end if

Lemma 4. Consider a MOO-program, M , over the signature Σ = {f,⊕, 0}. Let K∗ be the
set of saturated knowledge constructed from the cipher blocks of M and nonces. Then φ `E−1 t
iff ∃t′ ∈ K∗ s.t. t′ =E−1 t.

Theorem 2. Algorithm 1 is terminating, sound, and complete for the theory Rf ∪ (R⊕ ∪E⊕),

Proof Sketch Notice that K∗ is finite since for any t ∈ K∗, |t| ≤ |t′|, where t′ is the largest
term in C. Since checking equality module Rf ∪ (R⊕ ∪ E⊕) is decidable, termination follows.
The remainder of the proof follows from Lemma 4.

Example 2. Let C0 = p0⊕ f(IV ), C1 = p1⊕ f(p0)⊕ f(IV ), C3 = p2⊕ f(p1)⊕ f(p2). If IV is
known, IV ∈ N , then f(IV ) ∈ K∗ and from C0 we obtain, p0. Once we have p0, f(p0) ∈ K∗
and from C1 we get p1. Likewise, we can also obtain p2. Thus we have invertibility.

However, if we don’t know the IV , IV 6∈ N , then we can’t know f(IV ) and thus not p0.

5 Conclusions

We report on two algorithmic questions important to the synthesis of cryptographic modes of
operation. Future work includes identifying decidable cases of the decision problem, considering
the second form of the invertibility problem, and implementing the decidable case into a new
tool for the automatic synthesis and security verification of certain cryptosystems.
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Abstract

String rewriting systems is an important research area with many applications. One
important desired property of string rewriting systems is confluence, which ensures that
any two equivalent strings have the same “normal form”.

In this paper, we propose an algorithm to check confluence of special string rewrit-
ing systems, i.e., those where the right-hand side of every rule is the empty string. Our
goal is to improve the worst-case complexity of the algorithm of Kapur, Krishnamoorthy,
McNaughton and Narendran [6]. The key improvement that we suggest is the use of gen-
eralized suffix trees to check for overlaps between the left-hand sides of the string rewriting
system.

Keywords: special string rewriting system, confluence, generalized suffix trees.

1 Introduction

String rewriting systems have been studied very extensively in the last four decades. These
systems are basically collections of rewrite rules of the form l → r where l and r are strings
over an alphabet of symbols Σ. One of the important properties that one usually desires for
a string rewriting system is confluence which means that any two equivalent strings can be
rewritten in a finite number of steps to a common string. If the rewriting process can also be
shown to always terminate, then equivalence of strings with respect to the system (the word
problem) is decidable.

A suffix tree is a data structure that stores all the suffixes of a given string in a tree format.
Suffix trees have proven to be useful in reducing the time complexity of many important string
algorithms.

A generalized suffix tree (GST) [10, 11] is a variation on suffix tree. It is a suffix tree of
a set of strings and is a combination of suffix trees of all the strings in the set. This is done
by concatenating these strings by ending them each with a different end marker (as shown
in Figure 2). We are using generalized suffix trees in our algorithm in order to improve the
speed of implementation of string operations. Figure 1 is an example of a suffix tree for the
string abbaab which illustrates how the above-mentioned string arrangement can be represented
by a suffix tree:
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Figure 1: Suffix tree for string abbaab

In Figure 2 below, we represent a set of two strings {abac, caba} as a generalized suffix tree:

Figure 2: Generalized suffix tree for a set containing two strings {abac, caba}

We focus here on the problem of confluence for special string rewriting systems where every
rule is of the form w → ε where w is a nonempty string over some alphabet. Our main goal
is to suggest an improvement of the algorithm of Kapur, Krishnamoorthy, McNaughton and
Narendran [6], which has a worst case complexity of O(k|T |) where k is the number of rules
in the system T and |T | is the size of T , i.e., the sum of the lengths of all its left-hand sides.
We formulate the algorithm a little differently and propose the use of generalized suffix trees to
check for overlaps between left-hand sides.

We want to point out that here we only discuss checking confluence of a residual string
rewriting system, where a system is residual if and only if no left-hand side is a substring of
another. It is shown in [6] that this is the crux of the problem, since extracting a residual
system from a given system and checking the extra rules for joinability can be done in linear
time.

2 Definitions

The reader is referred to the books [1] and [4] for term rewriting and string rewriting respectively.
A string α overlaps with a string β if and only if a nonempty prefix of α is a suffix of β: in
other words, there are strings u, v, w such that α = uv and β = wu where u 6= ε. Two strings
x and y are conjugate (or cyclically equal) if and only if there exist two strings u and v such
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that x = uv and y = vu. For instance, the strings abaab and ababa are conjugates. Note that
conjugacy is an equivalence relation. A nonempty string is primitive if and only if it is not the
power of any other string. For instance, the string abaab is primitive, while the string ε and
bababa = (ba)3 are not. If x is a nonempty string, and z is a primitive string such that x = zn,
then we call z the root of x, and n the exponent of x [5].

Lemma 2.1. Let
{
β1, . . . , βn

}
be a set of primitive strings that are conjugate to one another.

Then
T =

{
β1 → ε, . . . , βn → ε

}

is confluent if and only if

1. no βi overlaps with itself, and

2. no two strings βi and βj (j 6= i) overlap in more than one way.

Proof. Suppose T is not confluent. Then there must be nonempty strings u, v, w such that
βi = uv and βj = vw for some i, j, with u 6= w. Two cases have to be considered.

1. i = j: Straightforward, since v 6= ε.

2. i 6= j: Since βi and βj are conjugates, there must be strings x, y such that βi = xy = uv
and βj = yx = vw. If y = v then x = u = w. Thus either y is a proper prefix and a
proper suffix of v, or vice versa. Thus βi and βj overlap in more than one way.

For the “only if” part, we need to consider the cases:

1. Some βi overlaps with itself, i.e., βi = uvu for some nonempty strings u, v. But uv
cannot be the same as vu since this would mean that βi is not primitive. Thus T is not
confluent (uv ←→ uvuvu ←→ vu).

2. Some βi and βj (j 6= i) overlap in more than one way. Let x be the smallest prefix of βi
that is a suffix of βj . Since there is another such overlap, it must be that

βi = xyxw and βj = uxyx

If u 6= w then T is not confluent. If u = w, then yxu = uxy. This equation has the
following general solution:

u = (v1v2)pv1, x = (v2v1)qv2, and y = (v1v2)rv1

for some v1, v2 and p, q, r ≥ 0. But then

uxyx = (v1v2)pv1(v2v1)qv2(v1v2)rv1(v2v1)qv2

= (v1v2)p+2q+r+2

which is not a primitive string.

Lemma 2.2. Let
{
α1, . . . , αn

}
be a set of conjugate strings and

{
γ1, . . . , γn

}
be their primitive

roots. Then
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T =
{
α1 → ε, . . . , αn → ε

}
is confluent if and only if T ′ =

{
γ1 → ε, . . . , γn → ε

}
is

confluent.

Proof. Since primitive roots of conjugate strings are conjugates themselves, the strings γ1, . . . , γn
are conjugates to one another. Let k > 0 be such that αi = γki for all i.

Suppose T ′ is not confluent. Then either

1. Some γi overlaps with itself, i.e., γi = uvu for some nonempty strings u, v where uv 6= vu.
Since αi = γki , (uvu)k−1uvuvu(uvu)k−1 →T (uvu)k−1uv and (uvu)k−1uvuvu(uvu)k−1 →T

vu(uvu)k−1. But (uvu)k−1uv and vu(uvu)k−1 cannot be equal since uv 6= vu.

2. There are nonempty strings u, v, w such that γi = uv and γj = vw for some i 6= j,

with u 6= w. Then (uv)k−1uvw(vw)k−1 →T (uv)k−1u and (uv)k−1uvw(vw)k−1 →T

w(vw)k−1 = (wv)k−1w. Again, (uv)k−1u and (wv)k−1w cannot be equal unless u = w.

In the other direction, suppose T ′ is confluent and T is not. We can now use Lemma 5.7
in [6]: if T is not confluent, there must be rules (xy)k → ε, (yx)k → ε in T , and strings u, v, w
such that

(xy)k = uv, (yx)k = wu, and v 6= w.

By Lemma 5.7 in [6] we get that x or y must have a self-overlap, or, in other words, xy and yx
overlap in more than one way. This contradicts the assumption that T ′ is confluent. (The case
where the rules are the same is the case y = ε.)

3 An Improved Algorithm for Testing Whether a Special
String Rewriting System in Confluent

The key new idea behind the algorithm is the use of generalized suffix trees (GST). This is
also the major difference between our algorithm and that of [6]. The advantage is that this
makes overlaps between strings easier to locate. For instance, if we build a GST for the set
of strings S, then, for any string w ∈ S, the strings it overlaps with (including itself) can be
found in |w| steps. This avoids the pairwise comparison of strings and hence the nested loops
in the algorithm of [6] (page 131).

The outline of our proposed algorithm is as follows:

Let T =
{
α1 → ε, . . . , αn → ε

}
be a special string rewriting system1. Let L denote the set

of left-hand sides, i.e.,
{
α1, . . . , αn

}
. We can build a GST for L in time O(|T |).

1. Identify all the left-hand sides that have self-overlaps and check whether their smallest
self-overlap is also a primitive root. If not, then terminate with failure. If yes, save the
primitive root.

Example: Consider the rule aba→ ε. The smallest self-overlap of aba is a, but
a is not a primitive root of aba. Hence the system is not confluent (ba ←→
ababa ←→ ab).

1As mentioned earlier, we assume that T is residual.
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This step can be done in O(|T |) time by using GST.

2. For every string αi identify strings that it overlaps within L. If αi has self-overlap and
one of the strings it overlaps with has not, then terminate with failure. Similarly if αi has
no self-overlap and one of the strings it overlaps with has, then terminate with failure.

Example: Let α1 = abab and α2 = bcba. α1 has a self-overlap (ab) whereas α2

does not. bcb ←→ bcbabab ←→ bab.

Similarly, if αi and one of the strings it overlaps with have different lengths, then terminate
with failure.

If αi and a string αj that it overlaps with are cyclically equal, then put them in the same
conjugate class. To check whether they are cyclically equal, since we already know the
overlap part, we only need to check whether the rest of the strings are the same. From
the Lemma 5.1 in [6], we know that if αi and αj are not cyclically equal, then we can
terminate with failure. Therefore if αi1

, . . . , αik
are the strings that αi overlaps with, then

For j = 1, . . . , k check whether αij
is cyclically equal to αi.

Mark αi and all of αi1
, . . . , αik

.

Note again that since conjugacy is an equivalence relation, we don’t need to consider all
pairs of strings. We only need to check that the initially considered string, αi, is conjugate
to all the other strings.

Now process the other strings in the conjugacy class: if any of them has an overlap with
an unmarked string or a string in another conjugacy class, then terminate with failure.

Example: Consider the strings abc, bca and ccb. abc overlaps with bca, and they
are cyclically equal. abc does not overlap with ccb, but bca overlaps with ccb. So
if abc is processed first, then only bca will be marked as conjugate. Now when
bca is processed the additional overlaps will be discovered and the algorithm
will terminate with failure.

3. Separate strings in L into equivalence classes of conjugates.

4. For each equivalence class, we already know their primitive roots from Step 1. We want
to check whether any of the primitive roots overlaps with another primitive root in more
than one way. This can be done by using a GST for the primitive roots and in O(|T |).

Example: Consider the rules abac → ε and caba → ε. abac and caba are
cyclically equal. But abac overlaps with caba in more than one way. Non-
confluence is not hard to see, since bac ←→ cababac ←→ cab and bac and
cab are irreducible.

4 Conclusion and Future Work

We have developed an algorithm of complexity
(
O(|T |)

)
to improve the worst-case complexity(

O(k|T |)
)

of the algorithm of Kapur, Krishnamoorthy, McNaughton and Narendran [6]. Im-
plementing this algorithm may not be arduous because generalized suffix trees have already
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been implemented in many programming languages. It will also be interesting to see whether
generalized suffix trees can be used for other kinds of systems as well.

For future work, we plan to look into computational problems for special confluent systems.
The word matching problem was shown to be undecidable in [7]. Unification — as defined
and shown in [9] — is decidable. We plan to look into the matching and unification problems
modulo special confluent systems, starting with the matching problem. We hope the structural
properties we proved and used for special confluent systems will be helpful in devising efficient
algorithms.
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Abstract

In this paper, we show some results about prefix grammars, also known as prefix rewrit-
ing systems. In particular, we investigate the complexity of some problems regarding prefix
grammars.

This work was inspired by the paper of Michael Frazier and C. David Page Jr.. We
show that their algorithm for obtaining a right-linear grammar equivalent to a prefix gram-
mar can be made to run in polynomial time. Additionally, we show that we can check,
in polynomial time, whether a prefix string rewriting system generates every string (the
universality problem), and whether a prefix grammar is deterministic or ambiguous.

We also prove that, given a deterministic finite-state automaton (DFA) and a prefix
grammar, whether the languages that they represent are equal is a PSPACE-hard problem.

Keywords: prefix grammar, right-linear grammar, ambiguity, determinism, universality.

1 Introduction

In this paper we explore prefix grammars and the equivalent right-linear grammars that can
be obtained from the Frazier-Page algorithm [1]. We study the complexity of the Frazier-Page
algorithm and show that it can be made to run in polynomial time. We also show that checking
the properties of universality, determinism and ambiguity can be done in polynomial time. We
show that the restricted equivalence problem of whether the language of a given DFA is equal
to the language of a given prefix grammar is PSPACE-hard.

2 Definitions

Let L be a language over an alphabet Σ and w ∈ Σ∗. The left quotient of L by w is defined as
w\L = {x | wx ∈ L}. Note also that ε\L = L for all L.

A prefix grammar GP is the triple
(
Σ, S = {αi | 1 ≤ i ≤ m}, P = {βj → γj | 1 ≤ j ≤ n}

)
,

where Σ is a finite set of symbols, S ⊂ Σ∗ is a finite set of base strings, and P is a finite
set of productions where β and γ are strings over Σ. (We use this notation throughout the
paper.) The productions may only be applied to rewrite the prefix of a string. Let L(GP ) be
the language of the prefix grammar GP .

A right-linear grammar GR is the tuple GR = (Σ, S,N,R), where Σ is a finite set of terminal
symbols, S is the start symbol, N is a finite set of non-terminal symbols, and R is a finite set
of productions of the form A → xB or A → x where A,B ∈ N and x ∈ Σ ∪ {ε}. Let L(GR)
denote the language of the right-linear grammar GR.
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3 On the Complexity of the Frazier-Page Algorithm

Let GP =
(
Σ, {αi | 1 ≤ i ≤ n}, {βj → γj | 1 ≤ j ≤ m}

)
be a prefix grammar. The Frazier-Page

algorithm constructs a right-linear grammar GR with m+ 1 nonterminals: the start symbol S1

and {Vβ | (β → γ) ∈ P}. It starts with the initial set of productions

S1 → α1 | . . . | αn | γ1Vβ1
| . . . | γmVβm

.

Let us denote this initial grammar as Ginit. Note that |Ginit| ≤ |GP |.
The algorithm then adds new rules as follows until no more rules can be generated: at any

stage if there is a derivation sequence from S1 to a string βiwVβj
by the grammar at that point

where the last rule applied is of the form Vβk
→ uwVβj with u 6= ε, then add Vβi → wVβj .

All the new rules that are added to this will be of the form Vβi
→ wVβj

, where the right-
hand side wVβj

is the suffix of the right-hand side of some rule in Ginit. Thus there will be at

most m ∗ |Ginit| new rules. The size of GR, the final grammar, will be O(|Ginit|3). To obtain
a new rule of the form Vβi

→ wVβj
, we have to find a derivation S ⇒∗ βiwVβj

.

Lemma 3.1. [2] (pages 154-155) Given a right-linear grammar G and a string w, we can check
whether w ∈ L(G) in O(|w| ∗ |G|2) time.

Thus finding a derivation for βiwVβj
can be done in O(|βiwVβj

| ∗ |GR|2) time. The length

of each such βiwVβj
has a (weak) upper bound of |GP |. Assuming the worst case where each

iteration only produces one new rule, we see that such derivations may have to be done m∗|Ginit|
times in each iteration. The bound on the overall number of iterations is also m ∗ |Ginit|. Thus
the overall complexity is O(|GP | ∗ |GR|2 ∗m2 ∗ |Ginit|2), or O(|GP |11).

4 Computational Problems

We have proved the following theorem in [6].

Theorem 4.1. Let GP =
(
Σ, {αi | 1 ≤ i ≤ n}, {βj → γj | 1 ≤ j ≤ m}

)
be a prefix

grammar and GR =
(
{Vβi
},Σ, R, S1

)
be the right-linear grammar obtained from a GP using

the Frazier-Page algorithm.

(a) For any i, j, if αi →∗P βjx, then Vβj
⇒+
R x.

(b) (Conversely) For any j, if Vβj
⇒+
R x, then βjx ∈ L(GP )

4.1 Universality

Lemma 4.1. Let GR be a right-linear grammar obtained from a GP by using the Frazier-Page
algorithm. If L(GP ) is Σ∗, then every non-terminal in GR can generate Σ∗.

Proof. Let L(GP ) = Σ∗ and suppose one of the non-terminals of GR, say Vβ , cannot generate
a string w. But βw ∈ L(GP ). So Vβ 6⇒+

R w. By Theorem 4.1 this is a contradiction.
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We now address the following question:

Can we check, in polynomial time, whether a prefix string rewriting system
generates Σ∗?

We first consider the following problem:

Let A = {x1, . . . , xm} and B = {y1, . . . , yn} be two sets of strings over an alphabet Σ
such that B does not contain the empty string, i.e., none of the yi’s is empty. We say (A, B)
covers a language L if and only if L ⊆ A ∪ B Σ∗.

The computational problem is this: given a DFA for a regular language L and sets A and
B as explained above, can we check whether (A, B) covers L in polynomial time?

The algorithm works as follows:

First construct a DFA M = (Σ, q0, Q,QF , δ) that recognizes the set difference LrA. This
can be done in polynomial time given a DFA for L. For each yi ∈ B, run M and mark the state
qj ∈ Q that the machine ends in. Let Qmarked be the set of these states. For each qfk ∈ QF ,
run depth-first-search to find all paths from q0 to qfk . If there is a path that does not contain
any state from Qmarked then L 6⊆ L(GP ). Otherwise L ⊆ L(GP ).

Theorem 4.2. We can check, given a prefix grammar GP , whether L(GP ) = Σ∗ in polynomial
time.

Proof. By Theorem 4.1 and the algorithm for converting a GP to a GR , we can consider GR
which accepts the same language as GP . We can also assume, without loss of generality, that
GR does not have any unit productions, i.e., rules of the form Vβi

→ Vβj
. We can assume that

rules with the same left-hand side are grouped together in the usual way, e.g.,

Vβi
→ xi1 | . . . | xim | yi1Vβi1

| . . . | yinVβin

For each such βi, let Aβi
= {xi1, . . . , xim} and Bβi

= {yi1, . . . , yin}. We also define Aε and
Bε for the start symbol S of the GR, which can be considered as Vε in the Frazier-Page con-
struction1. We can check whether each βi\L is covered by the corresponding

(
{xi1, . . . , xim},

{yi1, . . . , yin}
)
.

Now letGR be the right-linear grammar derived from aGP using the Frazier-Page algorithm,
and let β0 = ε.

Claim 4.2.1. Let L̂ be any language. If L̂ ⊆ L(Gp), then βi\L̂ is covered by (Aβi
, Bβi

) for
all βi, 0 ≤ i ≤ n.

Proof. Suppose there is a left-hand side β such that β\L̂ is not covered by (Aβ , Bβ). But

β\L̂ ⊆ β\L(Gp). Thus every string in β\L̂ can be derived from Vβ . It is not hard to see that
all such strings belong to Aβ ∪ BβΣ∗.

Claim 4.2.2. L(Gp) = Σ∗ if and only if Σ∗ is covered by (Aβi
, Bβi

) for all βi, 0 ≤ i ≤ n.

Proof. In order to show the “if” direction, suppose L(Gp) 6= Σ∗. Let w be the shortest string
with the following property: there exists a βi such that w cannot be generated from Vβi

in one
or more steps. Since Σ∗ is covered by (Aβi

, Bβi
) for all βi, there must be strings y and w′ such

1See [1], at the beginning of page 70.
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that w = yw′, w′ ∈ Σ∗ and y ∈ Bβi
. Suppose the group of rules with Vβi as the left-hand side

is
Vβi
→ xi1 | . . . | xim | yi1Vβi1

| . . . | yinVβin

Then y = yij for some j, and w′ is a string shorter than w which cannot be generated from Vβij
.

This is a contradiction. The “only if” direction follows straightforwardly from Claim 4.2.1.

Thus the result follows.

4.2 Restricted Equivalence Problem

We show that the following problem is PSPACE-hard:

Input: A DFA M and a prefix grammar Gp = (Σ, S, P ).

Question: Is L(M) equal to L(GP )?

The reduction is from the following problem:

Input: DFAs M1, . . . ,Mk over an alphabet Σ.

Question: L(M1) ∪ . . . ∪ L(Mk) =? Σ∗

Let
{
c, c1, . . . , ck

}
be a set of new symbols and let Σ′ = Σ ∪

{
c, c1, . . . , ck

}
. A DFA M for

the regular language
k⋃

i=1

{
ci
}
◦ L(Mi) ∪

{
c} ◦ Σ∗

can be constructed in polynomial time. For each 1 ≤ i ≤ k, construct prefix grammars(
Σ′, Si. Pi

)
for {ci} ◦ L(Mi) using the Ravikumar-Quan algorithm [4]. Now let

Π =
(
Σ′,

k⋃

i=1

Si, P
′) where P ′ =

k⋃

i=1

Pi ∪
{
ci → c

∣∣ 1 ≤ i ≤ k
}

In other words, we take the union of all sets of base strings as the new base, and the
union of all productions along with the extra productions that change every ci to a c. The
languages L(M) and L(Π) are equivalent if and only if

{
c} ◦Σ∗ is a subset of L(Π) if and only

if L(M1) ∪ . . . ∪ L(Mk) = Σ∗. A similar result is proved by Lohrey and Petersen [3] where
both inputs are prefix rewriting systems.

4.3 Determinism and Ambiguity

Theorem 4.3. Checking whether a prefix grammar GP is deterministic is decidable in polyno-
mial time.

Proof-idea: It can be shown that GP is not deterministic if and only if there are left-hand
sides βi and βj (i 6= j) such that βi is a prefix of βj and βj \L(GP ) is nonempty. 2

Lemma 4.2. A prefix grammar GP is ambiguous if and only if one of following conditions
holds:
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(a) There are base strings αi and αj such that αi →+ αj,

(b) There is a string w and distinct rules βi → γi and βj → γj such that w = γiw
′ = γjw

′′

for some w′, w′′ and both βiw
′ and βjw

′′ belong to L(GP ). (In other words, there are two
distinct derivations of w where the last steps are distinct.)

Proof. The “if” part is straightforward.

For the “only if” direction, if GP is ambiguous, there must exist a string w, and at least
two distinct ways to derive it.

w can either be a base string or a string derived from the base string. The case where w is
a base string is covered by case (a).

If w is not a base string, then there must be two non-trivial (i.e., not of length zero) derivation
sequences for w. If the last steps are the same for w, since the two derivations are distinct, we
always can trace the steps of generating w, go back and find another string with shorter steps
and the last steps are distinct.

Theorem 4.4. Ambiguity of prefix grammars can be checked in polynomial time.

Proof. To prove this result, we will show the two conditions in Lemma 4.2 can be checked
in polynomial time. First, we can apply the Frazier-Page algorithm to GP , and get a GR in
polynomial time. For each language βj\L(GR), we can create an NFA in linear time.

Case (a): For each αi and γj in GP , if γj is a prefix of αi, then check whether the remaining
suffix can be accepted by the NFA of βj\L(GR).

Case (b): Suppose γiw
′ = γjw

′′, i 6= j. Then either γi is a prefix of γj or the other way.
Without loss of the generality, let us assume that γj = γiu, then γjw

′′ = γiuw
′′ = γiw

′. Thus
w′ = uw′′.

We now need to check whether βiw
′ = βiuw

′′ and βjw
′′ both belong to L(GP ). In other

words, we need to check whether there are strings u, z such that uz ∈ βi\L(GR) and z ∈
βj\L(GR), or, equivalently, uz ∈ u · βj\L(GR).

NFAs for βi\L(GR) and u ·βj\L(GR) can be obtained in linear time from GR. Now getting
an NFA M for βi\L(GR) ∩ u · βj\L(GR) can be done in O(mn) time, where m and n are the
number of states in the two NFAs. The cost of checking whether M accepts any string or not
can be done in linear time.

This has to be repeated for all pairs of right-hand sides γi and γj where i 6= j and one is a

prefix of the other. Thus if there are p rules in GP , we have to check at most p(p−1)
2 pairs of

right-hand sides. The whole process is in polynomial time.

5 Conclusion and Future work

The following table contrasts our complexity results with the results for the other formalisms
for specifying regular languages.
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universality ambiguity equivalence to a DFA
DFA P N/A P
NFA PSPACE-complete P PSPACE-complete
Prefix grammars P P PSPACE-complete

As is well-known, prefix rewriting systems can be viewed as ground term rewriting systems
by considering each symbol as a monadic (unary) function. We plan to work on the unification,
matching and related problems for ground unary term rewriting systems.

One immediate step is to investigate the two generalizations introduced by Greibach [5].
Both have the flavor of matching. Please refer to our full paper [6] for more details.
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1 Introduction

Since Robinson introduced unification [6], many variations of Robinson’s unification algorithm
[6] have been proposed [5, 4, 1, 2, 3]. Indeed, “[t]he unification algorithm as originally proposed
can be extremely inefficient” [4, page 259]. Improving over Robinson’s original unification
algorithm has been attempted in three manners:

• by changing when the occurs check is performed (as done for example in [4]),

• by sharing instead of copying subexpressions to which variables are bound (as first sug-
gested by [5, 1]),

• by simplifying the already computed substitution or the expressions still to unify (as done
with the rules “variable elimination,” “reduction” and “compactification” of [4]).

An issue which has received little attention is whether a potential improvement of a unification
algorithm is realizable in run-time systems. Suggestions of the afore-mentioned third kind seem
hardly realizable at reasonable costs in a runtime system. The article [3] stresses that many
suggestions for improving Robinson’s unification algorithm are not successful in practice. That
article reports on an empirical evaluation of the performance of the unification algorithms by
Robinson [6], Martelli-Montanari [4], Escalada-Ghallab [2], and a formerly unpublished improve-
ment of Robinson’s algorithm showing that, unexpectedly, Robinson’s unification algorithm is
the most efficient!

This article reports on a refinement of Robinson’s original unification algorithm based on

• an in-memory representation of expressions, an issue not considered by Robinson,

• single left-to-right runs through, or traversals, of the expressions tested for unifiability,

• keeping track of the matching or unification mode of the sub-expressions so far run
through, an approach so far not considered,

• and exploiting the afore-mentioned in-memory representation for detecting when occurs
checks are unnecessary.

2 Preliminaries

Finitely many non-variable symbols and infinitely many variables are considered. In the follow-
ing, the lower case letters a, b, c, . . . , z with the exception of v denote the non-variable symbols,
v0, v1, v2, . . . (with subscripts) denote the variables. vi (with a superscript) denotes an arbitrary
variable.

An expression is either a first-order term or a first-order atomic formula. Expressions are
defined from constructors as follows. A constructor is a pair s/a with s a non-variable symbol
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and a one of finitely many arities associated with the symbol s. There are finitely many
constructors. An expression is either a variable or a non-variable expression. A non-variable
expression is either a constructor s of arity 0, s/0, or it has the form s(e1, . . . , en) where s/n
is a constructor of arity n ≥ 1 and e1, . . . , en are expressions. e1, . . . , and en are the direct
subexpressions of s(e1, . . . , en). Two expressions are variable-disjoint if none of the variables
occurring in the one expression occurs in the other.

An expression s(e1, . . . , en) is in standard notation. It can also be written without paren-
theses in prefix notation (or Polish or  Lukasiewicz notation) as s/n e1/a1 . . . en/an where ai
is the arity of expression ei (1 ≤ i ≤ n). While the standard notation is easier to read the
(parenthesis-free) prefix form is necessary for linear (or parenthesis-free) processor languages.

3 In-memory representations and dereferencing

The representation of an expression in the memory of a run-time system is based on the ex-
pression’s prefix notation. Assuming that a constructor and a variable are stored in 4 bytes
and storage begins at address 0, the representation of f(a, v1, b, v1) is:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f/4 a/0 nil b/0 8

The leftmost, or first, occurrence of the variable v1 is represented by the value nil which indicates
that the variable is unbound. The second occurrence of the variable v1 is represented by
an offset: The address of this second occurrence’s representation, 16, minus the offset, 8, is
the address of the representation of the variable’s first occurrence, 8. Occurrences of (the
representation of) a variable like the second occurrence of v1 in f(a, v1, b, v1) and the cell
representing such variables like the cell at address 16 in the above representation of f(a, v1, b, v1)
are called a locally bound variables or offset variables.

Two properties of an expression representation are worth stressing:

1. Variables’ names are irrelevant to expression representations, that is, variant expressions
have the same representation except for the memory addresses.

2. Two distinct expression representations do not share variables.

Representation of substitutions An elementary substitution {vi 7→ e} can be seen as a
pair (address of vi, address of the representation of e). If the representation of p(a, v1, v1) is
stored at address 0 and the representation of q(b, v3) at address 23, the substitution application
p(a, v1, v1){v1 7→ q(b, v3)} is represented before substitution application as:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

p/3 a/0 nil 4 q/2 b/0 nil

and after the application of p(a, v1, v1){v1 7→ q(b, v3)} as:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

p/3 a/0 23 4 q/2 b/0 nil

Observe that the cell representing the second occurrence of the variable v1 (cell at 12) keeps its
offset (4) unchanged. Thus, binding a variable v which occurs in an expression e to an expression
e′ consists in storing at the leftmost occurrence of v in the representation of e the address of the
representation of e′, leaving unchanged further occurrences of v in the representation of e. This
approach to binding variables makes the representation of a substitution application unique.
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Dereferencing Consider the following two representations of f(a, v1, v2, v1, g(v1)):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

f/5 a/0 nil nil 8 g/1 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

f/5 a/0 nil nil 8 36 g/1 8

The first representations of f(a, v1, v2, v1, g(v1)) is dereferenced because, except for the repre-
sentations of the second and third occurrences of the variable v1, the variables’ value are nil.
The second and third occurrences of v1 cannot be dereferenced like a pointer because this would
result in the following representation of f(a, v1, v2, v3, g(v4)), not of f(a, v1, v2, v1, g(v1)):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

f/5 a/0 nil nil nil 36 g/1 nil

A dereferenced representation of an expression e is generated from any representation Re of
e as follows: While traversing Re from left to right, if the cell reached contains a constructor
or nil, or the offset of a locally bound variable, then copy the cell’s content to a new cell.
Otherwise (the token reached is a non-locally bound variable v storing the address E of an
expression representation), recursively dereference the expression representation at address E.

In dereferencing, care must be given not to trespass expression representations’ ends in
recursive calls. This is cared for by using as follows the constructors’ arities during a left-
to-right traversal of an expression representation E: Let R denote the number of remaining
(sub-)expression representations; set R := 1 before traversing E, at each constructor s/n per-
form the update R := R−1+n (−1 for the (sub-)expression beginning at that constructor, and
+n for the n subexpression representations now to be traversed), and at each variable perform
the update R := R− 1. The expression representation’s end is reached when R = 0.

4 A matching-unification algorithm

A call to unif(e1, e2) performs a left-to-right run through, or traversal, of the representations
of expressions e1 and e2 stored at the addresses e1 and e2 respectively. The algorithm makes
uses of the variables

• A: One of VR (variant), SI (strict instance), SG (strict generalisation), OU (only unifiable,
i.e. unifiable but none of VR, SI, SG), or NU (not unifiable). Initialisation: A := VR

• R1 and R2: The end of the expression representation at address e1 (e2, respectively) is
reached when R1 = 0 (R2 = 0, respectively). Initialisation: R1 := arity(e1); R2 :=

arity(e2)

• S1 and S2: Substitutions for variables in the expression representations at addresses e1

and e2 respectively. Initialisation: S1 := []; S2 := []

S+R denotes the list obtained by appending R to the list S. a += b is shorthand for a := a+b.
The algorithm make uses of the functions:

• type(e): Type of the value stored in the cell with address e: cons if that value is a
constructor s/n, novar if it is a non-offset variable, or ofvar if it is an offset variable (i.e.
referring to a local non-offset variable).

• value(e): Value stored in the cell with address e (possibly nil).
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• arity(e): Arity of the constructor or variable stored at address e, the arity of a variable
being 0.

• deref(e, S): The application of a substitution S to the expression representation at
address e.

• occurs-in(e1, e2): Checks whether a variable at address e1 occurs-in the expression
representation at address e2.

The algorithm consists of 16 cases given in 4 tables. Each case is characterised by type(e1),
type(e2) and the (dereferenced) expression representations at addresses e1 and e2.

type(e2) = cons

value(e2) = s2/a2

type(e2) = novar

value(e2) = nil

type(e1) = cons

value(e1) = s1/a1

if value(e1) = value(e2)

then R1 += arity(e1)

R2 += arity(e2)

else A := NU

S2 += (e2, deref(e1, S1))

R1 += arity(e1)

if A = VR then A := SI

if A = SG then A := OU

type(e1) = novar

value(e1) = nil

S1 += (e1, deref(e2,S2))

R2 += arity(e2)

if A = VR then A := SG

if A = SI then A := OU

S2 += (e2, e1)

If both expressions are unbound variables then the variable at address e2 is bound to that at
address e1 what avoids generating cyclic substitutions.

type(e2) = ofvar

deref(e2,S2) != nil

type(e2) = ofvar

deref(e2,S2) = nil

type(e1) = cons

value(e1) = s1/a1

unif(deref(e1, S1),

deref(e2, S2))

de1 := deref(e1, S1)

de2 := deref(e2, S2)

if occurs-in(de2, de1)

then A := NU

else R1 += arity(e1)

S1 += (de2, de1)

S2 += (de2, de1)

A := OU

type(e1) = novar

value(e1) = nil

S1 += (e1, deref(e2,S2))

if A = VR then A := SG

if A = SI then A := OU

S1 += (e1, deref(e2,S2))

if A = VR then A := SG

if A = SI then A := OU

If the representation at address e1 starts with a constructor and the address e2 is a bound
variable, then the algorithm is recursively called. Otherwise, a binding is only generated if the
occurs check fails. Unbound variables can be bound to any variable whether bound or unbound.

type(e2) = cons

value(e2) = s2/a2

type(e2) = novar

value(e2) = nil

type(e1) = ofvar

deref(e1,S1) != nil

unif(deref(e1, S1),

deref(e2, S2))

S2 += (e2, deref(e1, S1))

if A = VR then A := SI

if A = SG then A := OU

type(e1) = ofvar

deref(e1,S1) = nil

de1 := deref(e1, S1)

de2 := deref(e2, S2)

if occurs-in(de1, de2)

then A := NU

else R2 += arity(e2)

S1 += (de1, de2)

S2 += (de1, de2)

A := OU

S2 += (e2, deref(e1, S1))

if A = VR then A := SI

if A = SG then A := OU
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The four cases above are symmetrical to the preceding four cases.

type(e2) = ofvar

deref(e2,S2) != nil

type(e2) = ofvar

deref(e2,S2) = nil

type(e1) = ofvar

deref(e1,S1) != nil

unif(deref(e1, S1),

deref(e2, S2))

de1 := deref(e1, S1)

de2 := deref(e2, S2)

if occurs-in(de2, de1)

then A := NU

else A := OU

S1 += (de2, de1)

S2 += (de2, de1)

type(e1) = ofvar

deref(e1,S1) = nil

de1 := deref(e1, S1)

de2 := deref(e2, S2)

if occurs-in(de1, de2)

then A := NU

else A := OU

S1 += (de1, de2)

S2 += (de1, de2)

de1 := deref(e1, S1)

de2 := deref(e2, S2)

S1 += (de2, de1)

S2 += (de2, de1)

Two offset variables pointing to bound variables result in a recursive call after applying substi-
tutions S1 and S2. Two offset variables only one of which points to an unbound variable require
an occurs check. However, two offset variables both pointing to unbound variables make an
occurs check unnecessary.

The time complexity of the algorithm is dominated by both the occurs check and the com-
patibility check both of which depend on the lengths of the expressions and the number of offset
variables (ofvar-nb) bound to non-offset variables. Thus, the time complexity of the algorithm
given above is in O(max(length(e1), length(e2))×max(1, ofvar-nb(e1) + ofvar-nb(e2))).

To sum up, keeping track of the matching mode, as long as the expression prefixes traversed
match, and dinstinguishing between locally bound, or offset, variables, and non-locally bound
variables makes it possible to avoid unnecessary occurs check.

Further work will be devoted to a experimental comparison of the algorithm given above
with formerly proposed unification algorithms.
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Delaune, Stéphanie 1:1

Erbatur, Serdar 7:1

Fernández, Maribel 3:1

Gencer, Çiğdem 4:1
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