--- title: "Tail Call Optimization in Python" date: 2020-10-11T20:46:54-04:00 draft: false tags: ["Python"] --- In a standard recursive function, a new stack frame is created every time a recursive call is made. This can lead to bad memory performance and as a protective measure, some programming languages have a maximum stack frame limit. The following example is in Python: ```python def factorial(n): if n == 0: return 1 return n * factorial(n-1) ``` ```python >>> factorial(1000) Traceback (most recent call last): File "", line 1, in File "", line 4, in factorial File "", line 4, in factorial File "", line 4, in factorial [Previous line repeated 995 more times] File "", line 2, in factorial RecursionError: maximum recursion depth exceeded in comparison ``` ## Implementation To get around this in Python, we need some sort of [trampoline](https://en.wikipedia.org/wiki/Tail_call#Through_trampolining), or way to exit part the stack and call the recursive function again. This technique is often used in Tail Call Optimization, and we can do this in Python using exceptions. This code is heavily inspired by Crutcher Dunnavant's [code snippet](https://code.activestate.com/recipes/474088-tail-call-optimization-decorator/) from 2006. ```python """ Python Decorator that enables tail call optimization through Exception Trampolines. """ from dataclasses import dataclass, field from typing import Any, Dict, List import functools import inspect @dataclass class TailRecurseException(Exception): """Exception to enable tail call recursion.""" args: List[Any] = field(default_factory=list) kwargs: Dict[Any, Any] = field(default_factory=dict) def tail_call(func): """ Decorator that performs tail call optimization. Notes ===== Works by throwing an exception to exit the stack when the function sees itself as its grandparent in the stack trace. It then calls itself with its new arguments. """ @functools.wraps(func) def recurse(*args, **kwargs): frame = inspect.currentframe() if frame.f_back is not None \ and frame.f_back.f_back is not None \ and frame.f_back.f_back.f_code == frame.f_code: raise TailRecurseException(args, kwargs) while True: try: return func(*args, **kwargs) except TailRecurseException as exception: args = exception.args kwargs = exception.kwargs return recurse ``` ## Example: Factorial Now let's redefine `factorial` in a tail-call way: ```python @tail_call def factorial(n, acc=1): if n == 0: return acc return factorial(n - 1, n * acc) ``` For the moment of truth... ```python >>> factorial(1000) 402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ``` ## Example: Fibonacci Numbers ```python @tail_call def fib(n, a=0, b=1): if n == 0: return a if n == 1: return b return fib(n - 1, b, a + b) ``` ```python >>> fib(1000) 43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875 ``` ## Conclusion You can install the package via pypi: ```bash pip install tail-recurse ``` It is also available on [Github](https://github.com/Brandon-Rozek/tail-recurse/).