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Design Patterns

Design Patterns

@ A design pattern is a solution to a design problem that
commonly occurs in software development.

@ Many design patterns have been proposed, we'll go over a few
today.

@ Many satisfy and are inspired from SOLID.
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Design Patterns

Design Pattern Categories

There are three categories for design patterns:

o Creational Patterns: Control the creation of objects by setting
various criterion.

@ Structural Patterns: Combines different classes in order to
create larger structures with new functionality.

@ Behavioral Patterns: Identifies and realizes common
communication patterns between objects.
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Design Patterns

Creational Patterns

Builder
Factory
Singleton
Prototype
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Design Patterns

Builder

This design pattern separates the construction of a complex object
from its representation.

Channel ¢ = new ChannelBuilder()
.rxFrequency (14.54)
.txFrequency(15.2)
.modulation("FSK")

.gain(5)
.build Q) ;
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Design Patterns

Builder Source

public ChannelBuilder rxFrequency(float freq) {
this.rxFrequency = freq;
return this;

}
public Channel build() {
if (this.rxFrequency == null) { throw new
IllegalStateException(""); }
return new Channel(this);
}
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Design Patterns

Factory

This allows you to create objects of a certain supertype without
knowing the exact subclass.

Scanner userInput = new Scanner(System.in);
System.out.println("Which dwelling do you desire?");
String userDream = userInput.nextLine();

DwellingFactory df = new DwellingFactory();
Dwelling d = df .makeDwelling(userDream);
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Design Patterns

Factory Source

public abstract class Dwelling { /* ... */ }
public class Apartment extends Dwelling { /* ... */ }
public class House extends Dwelling { /* ... */ }

public class DwellingFactory {
public Dwelling makeDwelling(String name) {
if (name == "Apartment") {
return new Apartment();
}
/] ...
return null; // Default
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Design Patterns

Singleton

Ensure a class has only one instance, and provide a global point of
access to it.

Logger log = Logger.getInstance();
log.write("Testing logger");
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Design Patterns

Singleton Source

public class Logger {
private static Logger instance = new Logger();
private Logger() {}
public static Logger getInstance() {
return instance;

}
/* ... x/
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Design Patterns

Questions

© Do the order of method calls before build matter for a
builder?
@ What is the benefit of templating over factories?

© How would you edit the singleton source if you didn't want to
eagerly create the instance object?
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Structural Patterns
o
(]
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o
o
o
o
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Adapter / Wrapper / Translator
Decorator

Flyweight

Bridge

Composite

Facade

Proxy



Design Patterns

Adapter

interface SupportsHDMI { /* ... %/ }

interface SupportsUSBC { /* ... %/ }

class Projector implements SupportsHDMI { /x ... */ }
class Laptop implements SupportsUSBC { /* ... */ }

class USBCToHDMIAdapter implements SupportsHDMI {
public USBCToHDMIAdapter (SupportsUSBC laptop) {
VA S Y
}
VA N
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Design Patterns

Decorator

Adds behavior dynamically to an individual object without
affecting the behavior of other objects from the same class.

Grapics watermarkedImage = new WatermarkDecorator (new

Image("profile.png"));
watermarkedImage.draw() ;
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Design Patterns

Decorator Source

public interface Graphics {
void draw();
¥
class WatermarkDecorator implements Graphics {

private final Graphics graphicsToDecorate;
Q@0verride

public void draw() {
graphicsToDecorate.draw() ;
this.drawWatermark() ;

}
/* ... x/
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Design Patterns

Flyweight

class Registry {
private HashMap<String, Person> people;

public Person findByName(String name) {
if (!people.containsKey(name)) {
people.put(name, Person(name));
}

return people.get(name);
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Design Patterns

Questions

@ Why would you want an adapter as opposed to using a
producer in the class?

@ The decorator example shows the watermark being drawn after
the method is ran. Does decorators support running it before?

© Name a couple benefits of the flyweight design pattern
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Behavioral Patterns

Mediator

Observer

Visitor

Chain of responsibility
Command

Iterator

Interpreter

Memento

Strategy
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Design Patterns

Mediator

Instead of having objects interact directly, a mediator encapsulates
how they interact.

public class Buyer { /* ... */ }
public class Seller { /x ... */ }

public class Escrow {
VA TR
public void receive_item(Item i) {
self.item = i;
if (this.money >= this.asking_price) {
this.facilitate_transfer();

}
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Design Patterns

Observer

Very popular pattern in event-driven frameworks. Allows objects to
subscribe to certain changes in the system.

class Character {

/x oo */
void update(String key) {
if (key == "UP") /% ... %/
}
}
/¥ . %/

player = Character();
loop.addObserver (player) ;
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Design Patterns

Observer Source

class EventLoop {
public interface Observer { void update(String e); }
private final ArrayList<Observer> obs = new
ArrayList<>();
private void notifyObservers(String event) {
obs.forEach(observer -> observer.update(event));
}
public void addObserver(Observer observer) {
obs.add (observer) ;
}
public static void main(String[] args) {
while (this.app.running()) {
if (this.keyPressed()) {
this.notifyObservers(this.keyCode) ;
}
}
}
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Design Patterns

Visitor

Separates out new functionality to a different class.

// Create a list of documents we want to export
ArrayList<Document> ds = new ArrayList<>();
ds.add(new Lease());

ds.add(new Agreement());

PDFExporter exporter = new PDFExporter();

// Export each document to PDF
ds.forEach((d) -> d.accept(exporter));
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Design Patterns

Visitor Source

public interface Doc {
public void accept(DocVisitor v);

b
public class Lease implements Document {

@0verride

public void accept(DocVisitor v) { v.visit(this); }
3

public interface DocVisitor {
public void visit(Lease 1);
public void visit(Agreement a);

X

public class PDFExporter implements DocVisitor {
Q@0verride
public void visit(Lease 1) { /* ... %/ }

¥
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Design Patterns

Questions

© What is the biggest danger of the mediator pattern?

@ s the observer pattern a one-to-one, many-to-one, or a
many-to-many relationship?

© What are the differences between the visitor pattern and
overloading?
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Any Questions?
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