Recitation 10

Principles of Software

Brandon Rozek
rozekb@rpi.edu

Rensselaer Polytechnic Institute, Troy, NY, USA

March 2022

Rozek Recitation 10


mailto:rozekb@rpi.edu

Outline

One Thing:

@ Design Patterns

Rozek Recitation 10



Design Patterns

Design Patterns

@ A design pattern is a solution to a design problem that
commonly occurs in software development.

@ Many design patterns have been proposed, we'll go over a few
today.

@ Many satisfy and are inspired from SOLID.

Rozek Recitation 10



Design Patterns

Design Pattern Categories

There are three categories for design patterns:

o Creational Patterns: Control the creation of objects by setting
various criterion.

@ Structural Patterns: Combines different classes in order to
create larger structures with new functionality.

@ Behavioral Patterns: Identifies and realizes common
communication patterns between objects.

Rozek Recitation 10



Design Patterns

Creational Patterns

Builder
Factory
Singleton
Prototype

Rozek Recitation 10



Design Patterns

Builder

This design pattern separates the construction of a complex object
from its representation.

Channel ¢ = new ChannelBuilder()
.rxFrequency (14.54)
.txFrequency(15.2)
.modulation("FSK")

.gain(5)
.build Q) ;

Rozek Recitation 10



Design Patterns

Builder Source

public ChannelBuilder rxFrequency(float freq) {
this.rxFrequency = freq;
return this;

}
public Channel build() {
if (this.rxFrequency == null) { throw new
IllegalStateException(""); }
return new Channel(this);
}

Rozek Recitation 10



Design Patterns

Factory

This allows you to create objects of a certain supertype without
knowing the exact subclass.

Scanner userInput = new Scanner(System.in);
System.out.println("Which dwelling do you desire?");
String userDream = userInput.nextLine();

DwellingFactory df = new DwellingFactory();
Dwelling d = df .makeDwelling(userDream);

Rozek Recitation 10



Design Patterns

Factory Source

public abstract class Dwelling { /* ... */ }
public class Apartment extends Dwelling { /* ... */ }
public class House extends Dwelling { /* ... */ }

public class DwellingFactory {
public Dwelling makeDwelling(String name) {
if (name == "Apartment") {
return new Apartment();
}
/] ...
return null; // Default

Rozek Recitation 10



Design Patterns

Singleton

Ensure a class has only one instance, and provide a global point of
access to it.

Logger log = Logger.getInstance();
log.write("Testing logger");

Rozek Recitation 10



Design Patterns

Singleton Source

public class Logger {
private static Logger instance = new Logger();
private Logger() {}
public static Logger getInstance() {
return instance;

}
/* ... x/

Rozek Recitation 10



Design Patterns

Questions

© Do the order of method calls before build matter for a
builder?
@ What is the benefit of templating over factories?

© How would you edit the singleton source if you didn't want to
eagerly create the instance object?

Rozek Recitation 10



Design Patterns

Structural Patterns
o
(]
(]
o
o
o
o

Rozek Recitation 10

Adapter / Wrapper / Translator
Decorator

Flyweight

Bridge

Composite

Facade

Proxy



Design Patterns

Adapter

interface SupportsHDMI { /* ... %/ }

interface SupportsUSBC { /* ... %/ }

class Projector implements SupportsHDMI { /x ... */ }
class Laptop implements SupportsUSBC { /* ... */ }

class USBCToHDMIAdapter implements SupportsHDMI {
public USBCToHDMIAdapter (SupportsUSBC laptop) {
VA S Y
}
VA N

Rozek Recitation 10



Design Patterns

Decorator

Adds behavior dynamically to an individual object without
affecting the behavior of other objects from the same class.

Grapics watermarkedImage = new WatermarkDecorator (new

Image("profile.png"));
watermarkedImage.draw() ;

Rozek Recitation 10



Design Patterns

Decorator Source

public interface Graphics {
void draw();
¥
class WatermarkDecorator implements Graphics {

private final Graphics graphicsToDecorate;
Q@0verride

public void draw() {
graphicsToDecorate.draw() ;
this.drawWatermark() ;

}
/* ... x/

Rozek Recitation 10



Design Patterns

Flyweight

class Registry {
private HashMap<String, Person> people;

public Person findByName(String name) {
if (!people.containsKey(name)) {
people.put(name, Person(name));
}

return people.get(name);

Rozek Recitation 10



Design Patterns

Questions

@ Why would you want an adapter as opposed to using a
producer in the class?

@ The decorator example shows the watermark being drawn after
the method is ran. Does decorators support running it before?

© Name a couple benefits of the flyweight design pattern

Rozek Recitation 10



Design Patterns

Behavioral Patterns

Mediator

Observer

Visitor

Chain of responsibility
Command

Iterator

Interpreter

Memento

Strategy

Rozek Recitation 10



Design Patterns

Mediator

Instead of having objects interact directly, a mediator encapsulates
how they interact.

public class Buyer { /* ... */ }
public class Seller { /x ... */ }

public class Escrow {
VA TR
public void receive_item(Item i) {
self.item = i;
if (this.money >= this.asking_price) {
this.facilitate_transfer();

}

Rozek Recitation 10



Design Patterns

Observer

Very popular pattern in event-driven frameworks. Allows objects to
subscribe to certain changes in the system.

class Character {

/x oo */
void update(String key) {
if (key == "UP") /% ... %/
}
}
/¥ . %/

player = Character();
loop.addObserver (player) ;

Rozek Recitation 10



Design Patterns

Observer Source

class EventLoop {
public interface Observer { void update(String e); }
private final ArrayList<Observer> obs = new
ArrayList<>();
private void notifyObservers(String event) {
obs.forEach(observer -> observer.update(event));
}
public void addObserver(Observer observer) {
obs.add (observer) ;
}
public static void main(String[] args) {
while (this.app.running()) {
if (this.keyPressed()) {
this.notifyObservers(this.keyCode) ;
}
}
}

Rozek Recitation 10



Design Patterns

Visitor

Separates out new functionality to a different class.

// Create a list of documents we want to export
ArrayList<Document> ds = new ArrayList<>();
ds.add(new Lease());

ds.add(new Agreement());

PDFExporter exporter = new PDFExporter();

// Export each document to PDF
ds.forEach((d) -> d.accept(exporter));

Rozek Recitation 10



Design Patterns

Visitor Source

public interface Doc {
public void accept(DocVisitor v);

b
public class Lease implements Document {

@0verride

public void accept(DocVisitor v) { v.visit(this); }
3

public interface DocVisitor {
public void visit(Lease 1);
public void visit(Agreement a);

X

public class PDFExporter implements DocVisitor {
Q@0verride
public void visit(Lease 1) { /* ... %/ }

¥

Rozek Recitation 10



Design Patterns

Questions

© What is the biggest danger of the mediator pattern?

@ s the observer pattern a one-to-one, many-to-one, or a
many-to-many relationship?

© What are the differences between the visitor pattern and
overloading?

Rozek Recitation 10



Design Patterns

Any Questions?

Rozek Recitation 10



	Design Patterns

