
Polymorphism
SOLID

Recitation 9

Brandon Rozek
rozekb@rpi.edu

Rensselaer Polytechnic Institute, Troy, NY, USA

March 2022

Rozek Recitation 9

mailto:rozekb@rpi.edu


Polymorphism
SOLID

Outline

Two Things:

Polymorphism

SOLID

Rozek Recitation 9



Polymorphism
SOLID

Overriding vs Overloading

Recall from Recitation 3...

Overloaded methods is a language feature that allows for the
same method name with different argument types. These are
bound with statically.

Overridden methods changes the method called when a
subclass uses the same method name as the superclass. These
methods are bound dynamically. Argument types must be the
same but return type may differ.

Rozek Recitation 9



Polymorphism
SOLID

Question:

1 What is static binding?

2 What is dynamic binding?

Rozek Recitation 9



Polymorphism
SOLID

Method Call Execution

What happens under the hood when you call a method?

We’ll need to consider what happens in compile-time and
run-time.

Rozek Recitation 9



Polymorphism
SOLID

Compile Time Method Determination

Consider the following example: p1.playCard(5);

1 Determine the method’s class: Player

2 Determine the method signature: void playCard(int)

3 Find all methods in the class that matches the signature.

This includes inherited methods
Input arguments can be subtypes of found signatures

4 Discard methods that are not accessible

5 Keep most specific signature

Rozek Recitation 9



Polymorphism
SOLID

Run Time Method Determination

1 Determine the runtime type of p1 by checking the heap
2 Until the method is found:

1 Find the method that matches the method call’s signature.
2 If found, invoke.
3 Otherwise, check the superclass.

Note: This is guaranteed to find a method since it passed
compilation.

Rozek Recitation 9



Polymorphism
SOLID

Polymorphism

Polymorphism provides one interface to data of a different
type.

Ad-Hoc Polymorphism

Functions that behave differently depending on the arguments
supplied.
Ex: Overloading

Parametric Polymorphism

Types that are not specified but can represent any type.
Ex: Java Generics, C++ Templates

Subtype Polymorphism

Where a subtype relates to a supertype by some notion of
substitutability.
Ex: Overrides

Rozek Recitation 9



Polymorphism
SOLID

Question:

What type of polymorphism are the following featuring?

1 ArrayList<int> x = new ArrayList<int>();

2 p1.equals(p2);

3 Brandon.say("Hi"); Brandon.say("Hi␣Bob", bob);

Rozek Recitation 9



Polymorphism
SOLID

SOLID

Single Responsibility Principle: Every class should have one
job.

Open-Closed Principle: Software entities should be open for
extension but closed for modification.

Liskov Substitution Principle: An object with stronger
specification can be substituted for an object with a weaker
one without altering correctness.

Interface Segregation Principle: Many client-specific
interfaces are better than one general-purpose interface.

Dependency Inversion Principle: Depend upon abstractions,
not concretions.

Rozek Recitation 9



Polymorphism
SOLID

Subclassing

Inheriting a class in Java is the same as subclassing.

Benefits:

Reuse of code: fields and methods

Simpler Maintenance: Fix issues only in superclass

Disadvantages:

May break one of the equivalence relation properties.

Fragile Base Class Problem: Changes in the implementation
details of the superclass can break subclasses.

Rozek Recitation 9



Polymorphism
SOLID

True Subtypes

A class B is a true subtype if:

B is a subclass of A AND

B has a stronger specification than A

Rozek Recitation 9



Polymorphism
SOLID

Question:

1 What makes one specification stronger than another?

2 Are Java subtypes true subtypes?

Rozek Recitation 9



Polymorphism
SOLID

Liskov Substitution Principle

One good software design practice is to ensure that every subclass
is a true subtype of its superclass.

How? Given a subclass B of A:

B should not remove methods from A

For each method B.m that override’s A.m, B.m must not
have a weaker spec than A.m.

Any property guaranteed by supertype must be guaranteed by
subtype

Rozek Recitation 9



Polymorphism
SOLID

Contravariance and Covariance Review

Review from Recitation 5...
Lets say we have classes Student and Person where Student is a
subtype of (<:) Person.

Now consider the composite classes C<Student> and C<Person>:

The relationship is covariant if C<Student> <: C<Person>

The relationship is contravariant if C<Person> <:
C<Student>

Bivariant is both covariant and contravariant.

Invariant is neither covariant nor contravariant.

Rozek Recitation 9



Polymorphism
SOLID

Question:

What are the variances of the following?

1 Java Arrays?

2 Java Generics?

Rozek Recitation 9



Polymorphism
SOLID

Liskov Substition Principle Rules

Parameter types of A.m may be replaced by supertypes in
subclass B.m.

Return type of A.m may be replaced by subtype in subclass
B.m

No new exceptions should be thrown, unless the exceptions
are subtypes of exceptions thrown by the parent

Preconditions cannot be strengthened in the subtype.

You cannot require more than the parent

Postconditions cannot be weakened in the subtype.

You cannot guarantee less than the parent

Rozek Recitation 9



Polymorphism
SOLID

Substition Principle for Classes

Constraints on classes:

Any property guaranteed by supertype must be guaranteed by
subtype

Subtype can strengthen and add properties

Anything provable about A is provable about B

A’s rep invariant must hold in B

No specification weakening

No method removal

Rozek Recitation 9



Polymorphism
SOLID

Substitution Principle for Methods

Constraints on methods:

May introduce new methods

Each override method must have a stronger or equal spec

Weaker or equal precondition / Ask nothing extra of client

Guarantee as much as supertype

Effects clause is at least as strict as supertype

No new entries in modifies clause

The overriding method satisfies the supertype spec

No new exceptions in domain

Rozek Recitation 9



Polymorphism
SOLID

Question:

1 If class A throws Error, can a true subtype B throw
AssertionError?

2 If class A guarantees balance ≥ 0, can a true subtype B
guarantee balance ≥ −1?

3 Given a class A, can a true subtype B have less methods?

Rozek Recitation 9



Polymorphism
SOLID

Any Questions?

Rozek Recitation 9


	Polymorphism
	SOLID

