Coherent Control of Atomic Population Using the Genetic Algorithm

Brandon Rozek

Dr. Nguyen, Faculty Advisor Department of Physics University of Mary Washington July 26th 2017

Research Goal

- Create a program that gives the parameters needed for two lasers to excite a desired amount of ⁸⁷Rb to an upper excited state.
- Otherwise known as Coherent Control

Outline

Background

- An atom's interaction with light
- Technique for excitation
- Goal of coherent control
- Applications of coherent control

Methods

- Modelling population dynamics
- Implementing the Genetic Algorithm

Atom's Interaction with Light

DePaola, B. Notes for Spring 2003 AMO Course: Lectures on Coherent Excitation

- Light increases the amount of energy in a system
- Energy levels in an atom are discrete

Coherent Excitation

- This is a technique to excite atoms efficiently
- The pump couples the ground and the transition state
- The stokes couples the transition state with the upper excited state

H.A. Camp, Ph.D. thesis, Kansas State University, 2005

Applications

Bounded Quantum Storage Model

- Eve can store a limited number of quantum bits
- So Bob and Alice need fine control of the information transfer

Methods

Modelling Population Dynamics

- The Hamiltonian describes the interaction effects between the different energy levels
- The Liouville equation creates 9 coupled differential equations to work with

$$H = \begin{pmatrix} 0 & \Omega_{1}[t] & 0 \\ \Omega_{1}[t] & 2\Delta_{1} & \Omega_{2}[t] \\ 0 & \Omega_{2}[t] & 2\Delta_{2} \end{pmatrix} \qquad \frac{\partial \rho}{\partial t} = \frac{1}{i\hbar} \begin{bmatrix} H, \rho \end{bmatrix}$$
Hamiltonian
$$Hamiltonian$$

$$Hamiltonian$$

$$Hamiltonian$$

$$Hamiltonian$$

$$Quantum Liouville Equation Density$$

Matrix

Why Genetic Algorithm

Intuitive and easy to implement

Efficient way of searching the possible parameter space

How the Genetic Algorithm Works

Generate the population

- First using random numbers
- Subsequent times using 'Natural Selection'

Repeat

• Until termination conditions are met

Calculate population fitness

• How close is the set of parameters to the desired result?

Check termination conditions

• Is the result good enough?

Generate the Initial Population

Generate a set of parameters randomly within a valid parameter range

 For example, intensities can be from 0 to 100 mW/cm^2

How close is the amount transferred to the desired amount?

Obtaining the Parents

- Use the fitness values to assign weightings to the different parameters. The higher the fitness value, the more likely it is to be chosen
- Use the weightings to sample from the existing population to select the parents

Arrington, Clare. Digital image

New Generation

Crossover	Mutation	Repeat
Use the parent's 'genetic code' to create the new parameter set (child)	Slight probability that a parameter in the child regenerates.	Many times to replace the existing population with the new one

Termination Condition

This is what stops the algorithm

Stops when algorithm barely improves its findings

Report back the best result found when met

Sample Result

Finding the parameters needed for 75% population transfer

Algorithmic Efficiency

- H.A. Camp, Ph.D. thesis, Kansas State University, 2005.
- Daniel A. Steck. Rubidium 87 D Line Data, Los Alamos, 2001.
- Bengtsson, Mats. *Genetic Algorithms*. Computer software. *Genetic Algorithms*. Wolfram, 1993.

Acknowledgements

- UMW Summer Science Institute
- UMW Department of Physics
- Dr. Hai Nguyen, Faculty advisor
- Hannah Killian, Fellow researcher

Questions?