<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta name="author" content="Brandon Rozek"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="robots" content="noindex" /> <title>Brandon Rozek</title> <link rel="stylesheet" href="themes/bitsandpieces/styles/main.css" type="text/css" /> <link rel="stylesheet" href="themes/bitsandpieces/styles/highlightjs-github.css" type="text/css" /> </head> <body> <aside class="main-nav"> <nav> <ul> <li class="menuitem "> <a href="index.html%3Findex.html" data-shortcut=""> Home </a> </li> <li class="menuitem "> <a href="index.html%3Fcourses.html" data-shortcut=""> Courses </a> </li> <li class="menuitem "> <a href="index.html%3Flabaide.html" data-shortcut=""> Lab Aide </a> </li> <li class="menuitem "> <a href="index.html%3Fpresentations.html" data-shortcut=""> Presentations </a> </li> <li class="menuitem "> <a href="index.html%3Fresearch.html" data-shortcut=""> Research </a> </li> <li class="menuitem "> <a href="index.html%3Ftranscript.html" data-shortcut=""> Transcript </a> </li> </ul> </nav> </aside> <main class="main-content"> <article class="article"> <h1>Introduction to Connectivity Based Models</h1> <p>Hierarchical algorithms combine observations to form clusters based on their distance.</p> <h2>Connectivity Methods</h2> <p>Hierarchal Clustering techniques can be subdivided depending on the method of going about it.</p> <p>First there are two different methods in forming the clusters <em>Agglomerative</em> and <em>Divisive</em></p> <p><u>Agglomerative</u> is when you combine the n individuals into groups through each iteration</p> <p><u>Divisive</u> is when you are separating one giant group into finer groupings with each iteration.</p> <p>Hierarchical methods are an irrevocable algorithm, once it joins or separates a grouping, it cannot be undone. As Kaufman and Rousseeuw (1990) colorfully comment: <em>"A hierarchical method suffers from the defect that it can never repair what was done in previous steps"</em>. </p> <p>It is the job of the statistician to decide when to stop the agglomerative or decisive algorithm, since having one giant cluster containing all observations or having each observation be a cluster isn't particularly useful.</p> <p>At different distances, different clusters are formed and are more readily represented using a <strong>dendrogram</strong>. These algorithms do not provide a unique solution but rather provide an extensive hierarchy of clusters that merge or divide at different distances.</p> <h2>Linkage Criterion</h2> <p>Apart from the method of forming clusters, the user also needs to decide on a linkage criterion to use. Meaning, how do you want to optimize your clusters.</p> <p>Do you want to group based on the nearest points in each cluster? Nearest Neighbor Clustering</p> <p>Or do you want to based on the farthest observations in each cluster? Farthest neighbor clustering.</p> <p><img src="http://www.multid.se/genex/onlinehelp/clustering_distances.png" alt="http://www.multid.se/genex/onlinehelp/clustering_distances.png" /></p> <h2>Shortcomings</h2> <p>This method is not very robust towards outliers, which will either show up as additional clusters or even cause other clusters to merge depending on the clustering method.</p> <p>As we go through this section, we will go into detail about the different linkage criterion and other parameters of this model.</p> </article> </main> <script src="themes/bitsandpieces/scripts/highlight.js"></script> <script src="themes/bitsandpieces/scripts/mousetrap.min.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], processEscapes: true } }); </script> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <script> hljs.initHighlightingOnLoad(); document.querySelectorAll('.menuitem a').forEach(function(el) { if (el.getAttribute('data-shortcut').length > 0) { Mousetrap.bind(el.getAttribute('data-shortcut'), function() { location.assign(el.getAttribute('href')); }); } }); </script> </body> </html>