
ADT Methods
Representation Invariant

Recitation 6

Brandon Rozek
rozekb@rpi.edu

Rensselaer Polytechnic Institute, Troy, NY, USA

February 2022

Rozek Recitation 6

mailto:rozekb@rpi.edu


ADT Methods
Representation Invariant

Outline

Two things:

ADT Methods

Representation Invariants

Rozek Recitation 6



ADT Methods
Representation Invariant

Logistics

First exam is next week.

Let me know if you have any topics that you want me to go
over.

Rozek Recitation 6



ADT Methods
Representation Invariant

Running Example

I have an amateur radio license from the
FCC, callsign KN4VYS.

I am particularly interested in software
defined radio (SDR)

To make some of these concepts concrete,
let’s apply them to building an SDR!

Rozek Recitation 6



ADT Methods
Representation Invariant

Side Effects

A method is said to have a side effect if it modifies some state
outside its local context.

Examples include: modifying object fields, printing to the
screen, taking user input, network calls.

A program is not useful unless it has a side effect of some kind.

Rozek Recitation 6



ADT Methods
Representation Invariant

Reasoning through Side Effects

Since side effects exist outside the method you’re considering,
this makes them difficult to reason through.

The most common technique used to deal with side effects is
through immutability and exceptions.

Rozek Recitation 6



ADT Methods
Representation Invariant

Personal Thoughts

The functional programming community have made great
strides in dealing with side effects primarily through monadic
structures. (Feel free to ask me!)

Though a simple recommendation I have is to decouple
computation from side effects.

e.g A method radiate() should not also print to the screen

Rozek Recitation 6



ADT Methods
Representation Invariant

Reasoning through Abstract Data Types

In fact, methods that are small and follow the
single-responsibility principle are often easier to reason about
and prove!

At first, it’ll feel verbose and repetitive. Later on you’ll learn
techniques which are more concise.

Rozek Recitation 6



ADT Methods
Representation Invariant

Example: Radio Overview

A radio (more specifically a transciever) contains both a receiver
and a transmitter in one unit.

Rozek Recitation 6



ADT Methods
Representation Invariant

Example: Connecting to a Repeater

Amateur radio operators extend their reach by connecting to a
repeater. In the next slides, we’ll analyze channels.

Rozek Recitation 6



ADT Methods
Representation Invariant

ADT Methods

We group the access methods of an ADT into:

Creators: Creates a brand new object.

Observers: Returns information about this object.

Producers: Returns a new object of this type by performing
operations on the current object.

Mutators: Changes this objects fields.

Note: Immutable ADTs do not have mutators.

Rozek Recitation 6



ADT Methods
Representation Invariant

Creators

Another name for constructors

No preexisting state is changed, therefore modifies is none.

public Channel(double freq);

public Channel(double rxFreq, double txFreq);

Rozek Recitation 6



ADT Methods
Representation Invariant

Observers

Returns information about this which often is of a different
type (int, String, etc)

Should have no side effects.

public bool isSimplex() {

return this.rxFrequency == this.txFrequency;

}

Rozek Recitation 6



ADT Methods
Representation Invariant

Producers

Returns an object of the same type, often with different fields.

This technique is very common in immutable objects.

Should have no side effects.

public Channel toDuplex(double txFrequency) {

return new Channel(this.rxFrequency, txFrequecy)

}

Rozek Recitation 6



ADT Methods
Representation Invariant

Mutators

Changes internal state of this

Often does not return anything

public void changeRxFrequency(double frequency) {

this.rxFrequency = frequency;

}

Rozek Recitation 6



ADT Methods
Representation Invariant

Immutability

In immutable objects, instead of changing state through
mutators, producers are used.

// Alternative to mutator

public Channel changeRxFrequency(double frequency) {

return Channel(frequency, this.txFrequency);

}

Java strings are immutable and follow this pattern.

Rozek Recitation 6



ADT Methods
Representation Invariant

Immutability

Big benefit to immutable objects is that they are thread safe
by default!

Slight performance detriment since memory gets copied.

For correctness, need to make sure memory is copied and not
referenced in new object.

Rozek Recitation 6



ADT Methods
Representation Invariant

Representation Invariant

Rozek Recitation 6



ADT Methods
Representation Invariant

Representation Invariant

Similar to how we use loop invariants to reason about loops,
we’ll use representation invariants to reason about objects.

Indicates whether data representation is well-formed.

Must hold before and after every method.

Example: this.frequency > 0

Rozek Recitation 6



ADT Methods
Representation Invariant

Abstraction Function

What does the data structure semantically mean?

Example from class: array[2, 3, -1] represents −x2 + 3x + 2

Rozek Recitation 6



ADT Methods
Representation Invariant

Representation Exposure

Representation exposure is unintentional external access to
the underlying representation of an object.

Allows access without going through object’s public methods

Representation exposure can break representation invariants!

Rozek Recitation 6



ADT Methods
Representation Invariant

Example

Java does not provide any guarantees with the private keyword.

public class Channel {

private double rxFrequency;

private double txFrequency;

public Channel(double freq) {

if (freq <= 0) {

throw new IllegalArgumentException();

}

this.rxFrequency = freq;

this.txFrequency = freq;

}

public static void main(String[] args) {

Channel c = new Channel(14.54);

c.rxFrequency = -5.0; // Bypassed our check :(

}

}

Rozek Recitation 6



ADT Methods
Representation Invariant

Immutability Solution

With the final keyword, immutability is enforced.

public class Channel {

final private double rxFrequency;

final private double txFrequency;

public Channel(double freq) {

if (freq <= 0) {

throw new IllegalArgumentException();

}

this.rxFrequency = freq;

this.txFrequency = freq;

}

// Add producer method setFreq

public static void main(String[] args) {

Channel c = new Channel(14.54);

c.rxFrequency = -5.0; // Compiler error

}

}
Rozek Recitation 6



ADT Methods
Representation Invariant

Beware of References

public class Channels {

private ArrayList<Channel> cs;

public Channels(ArrayList<Channel> cs_param) {

this.cs = cs_param;

}

public Channels add(Channel c) {

Channels new_channels = new Channels(this.cs);

new_channels.cs.add(c);

return new_channels;

}

public static void main(String[] args) {

Channel n2ty = new Channel(145.17);

Channels empty_channels = new Channels(new

ArrayList<Channel>(););

Channels some_channels = empty_channels.add(n2ty);

System.out.println(empty_channels.cs.size());

}

} Rozek Recitation 6



ADT Methods
Representation Invariant

Recommendation: Copy

When dealing with mutable producers, always make sure you
perform a copy!

Do note the difference between a shallow and a deep copy...

Rozek Recitation 6



ADT Methods
Representation Invariant

Defensive Programming

If you’re dealing with mutable objects:

Assume your invariants will be violated!

Check the invariants on method entry, exit, etc.

Rozek Recitation 6



ADT Methods
Representation Invariant

Checking Invariants with Assertions

Assertions can be used to check invariant satisfaction.

java runs with assertions disabled by default (java -ea to
enable)

When assertions are not satisfied an AssertionError

exception is thrown.

Rozek Recitation 6



ADT Methods
Representation Invariant

Example

public Channel toDuplex(double txFreq) {

assert this.rxFrequency > 0;

assert txFreq > 0;

return new Channel(this.rxFrequency, txFreq);

}

Rozek Recitation 6



ADT Methods
Representation Invariant

Defensive Programming - Preconditions

Recall that preconditions are what is assumed to be true
before the method call.

If its not true then all bets are off!

But as we saw with defensive programming constraints will
often get violated.

Rozek Recitation 6



ADT Methods
Representation Invariant

Preconditions and Exceptions

This class recommends to have weaker preconditions in order
to strengthen the specification.

Make use of exceptions when inputs are invalid!

There might be some cases where weaker preconditions are undesirable...

Rozek Recitation 6



ADT Methods
Representation Invariant

Client Code: Try/Catch/Finally

The exception pattern is quite common with I/O operations.

public void mute_transmit() {

Socket s;

try { s = new Socket(host, port); /* ... */ }

catch (ConnectionException e) { /* ... */ }

finally { s.close(); }

}

Rozek Recitation 6



ADT Methods
Representation Invariant

Propagate Exceptions

In Java, checked exceptions must be either dealt or propogated by
the caller. To propogate, use the throws keyword in the method
declaration.

class Channels {

/* Declarations from before... */

public void loadConfigFromFile(String filename)

throws IOException {

FileReader file = new FileReader(filename);

BufferedReader fileInput = new

BufferedReader(file);

fileInput.readLine(); // Might throw IOException

fileInput.close();

}

}

Rozek Recitation 6



ADT Methods
Representation Invariant

Any Questions?

Rozek Recitation 6


	ADT Methods
	Representation Invariant

