
Refactoring
UI Design

Recitation 13
Principles of Software

Brandon Rozek
rozekb@rpi.edu

Rensselaer Polytechnic Institute, Troy, NY, USA

April 2022

Rozek Recitation 13

mailto:rozekb@rpi.edu


Refactoring
UI Design

Outline

Two Things:

Refactoring

UI Design

Rozek Recitation 13



Refactoring
UI Design

Technical Debt

Technical debt refers to the cost of picking a simpler solution
as opposed to a maintainable one.

As a project progresses, it may incur ”interest” making it
more difficult to implement changes.

Commonly caused by:

Business Pressures

Insufficient Specifications

Tightly coupled components

Rozek Recitation 13



Refactoring
UI Design

Antipatterns

An anti-pattern is a common rseponse to a recurring problem that
is usually ineffective or counterproductive.

Examples include:

Big ball of mud: Lack of design

God Class: One class handles everything.

Poltergeists: Ephemeral controller classes that only exist to
invoke other methods on classes.

Rozek Recitation 13



Refactoring
UI Design

Code Smells

Similar to antipatterns, a code smell indicates potential techincal
debt within the codebase.

Five categories of code smells (by Mika Mäntylä):

The Bloaters: Components too large to handle.

The Object-Orientation Abusers: Not making use of OO
features such as polymorphism.

The Change Preventers: Hinders further development.

The Dispensibles: Unnecessary components that should be
removed.

The Couplers: Captures high dependency between multiple
classes.

Rozek Recitation 13



Refactoring
UI Design

Example Code Smells

The Bloaters:

Large Class, Long Parameter List

Data Clumps: Groups of variables passed around together in a
program. It should be an object instead.

The Object-Orientation Abusers:

Refused Bequest: An overriding of a method that is not a true
function subtype.

The Change Preventers:

Shotgun surgery : A single change requires changes to
multiple classes.

Rozek Recitation 13



Refactoring
UI Design

Example Code Smells

The Dispensibles:

Duplicated Code, Dead Code

Lazy class / freeloader: a class that does too little.

The Couplers:

Feature envy: a class that uses methods of another class
excessively.

Inappropriate intimacy: a class that has dependencies on
implementation details of another class.

Rozek Recitation 13



Refactoring
UI Design

Static Code Analysis

Static code analysis is a methodology of analyzing code without
executing it. Commonly called linters, these programs attempt to
find bugs, stylistic errors, and code smells.

Examples for Java:

Checkstyle: Style checking tool.

Spotbugs: Static analysis tool for fidning bugs.

Rozek Recitation 13



Refactoring
UI Design

Refactoring

Refactoring is the process of restructuring code without changing
its behavior.

There are two primary benefits:

Maintainability: Make it easier to understand.

Extensibility: Make it easier to modifier in the future.

Refactoring Techniques:

Extract Method

Move Method

Replace temp with query

Replace type code with State/Strategy

Rozek Recitation 13



Refactoring
UI Design

Refactoring Techniques

The three most common techniques are abstraction, splitting, and
relocation.

Splitting involves the breaking apart of large classes or methods.

Relocation involves the renaming or moving of a component up the
superclass or subclass.

Abstraction techniques include:

Encapsulate Field (Getters/Setters)

Generalize Type (Generics)

Replace Type code with State/Strategy

Replace conditional with Polymorphism

Rozek Recitation 13



Refactoring
UI Design

Extract Method

A splitting technique used to break up logical chunks into separate
methods.

Approach:

1 Create a new method.

2 Move the extracted code to the new method.

3 Any referenced variables that are not declared in the extracted
code, make into a parameter.

4 Return parameters that are modified and used after the
extracted component.

5 Replace the extracted code with a method call.

6 Compile and test.

Rozek Recitation 13



Refactoring
UI Design

Move Method

A relocation technique used to decouple classes and move a
method to a more appropriate location.

Approach:

1 Declare the method in the target class.

2 Appropriately copy the code from the source class to the
target class.

3 Do take note of the (sub/super)-classes to capture all
declarations of the method.

4 Turn the original method to a delegating method.

5 Compile and test.

Rozek Recitation 13



Refactoring
UI Design

Replace Temp with Query

A splitting technique that deals with side calculations and making
it so that temporary variables are not inappropriately reused.

Approach:

1 Identify the temporary variable representing a side calculating.

2 Declare the type as final

3 Capture the calculation of that variable into a method (which
we call query). Replace all occurrences of the side calculation
with the query.

4 Note that the query method should be free of side effects.

5 Compile and test.

Rozek Recitation 13



Refactoring
UI Design

State Design Pattern

A state design pattern is commonly used to have behavior differ
depending on some state.

Useful for when:

Creating subclasses are not ideal.

Objects may change between multiple states throughout
runtime.

Rozek Recitation 13



Refactoring
UI Design

State Design Pattern Usage

Transform:

public class Person {

private String name;

private int mood;

}

To:

public class Person {

private String name;

private MoodType mood;

}

MoodType would then be an abstract class which is extended for
each type of mood.

Commonly used with the ”Replace conditional with
Polymorphism” technique.

Rozek Recitation 13



Refactoring
UI Design

UI Design

Rozek Recitation 13



Refactoring
UI Design

Usability

Usability captures the capacity for a system to allow users to
perform tasks safely, effectively, and efficiently while enjoying the
experience.

Rozek Recitation 13



Refactoring
UI Design

Components of Usability

From Jakob Nielsen:

Learnability: How easy is it to accomplish basic tasks on first
encounter?

Efficiency: Once users have learned the design, how quickly
can they perform tasks?

Memorability: When users return to the design after a period
of not using it, how easily can they re-establish proficiency?

Errors: How many errors do users make, how severe are these
errors, and how easily can they recover from the errors?

Satisfaction: How pleasant is it to use the design?

Rozek Recitation 13



Refactoring
UI Design

Extra Components

The US government in addition to the ones in the last slide also
include:

Desirable: Image, identity, brand, and other design elements
are used to evoke emotion and appreciation

Findable: Content needs to be navigable and locatable onsite
and offsite

Accessible: Content needs to be accessible to people with
disabilities

Credible: Users must trust and believe what you tell them

Rozek Recitation 13



Refactoring
UI Design

Learnability & Memorability

Learnability:

People normally do not learn a complete interface before using
it.

Aim for consistent design and behavior.

Memorability:

Use common terminology. Avoid jargon.

Use icons wisely

Rozek Recitation 13



Refactoring
UI Design

Errors

Avoid mode errors.

Use confirmation windows sparingly.

Are errors few and recoverable?

Add an undo option.

Rozek Recitation 13



Refactoring
UI Design

Fitt’s Law

Fitt’s Law is a predictive model of human movement used to
model the act of pointing.

Intuitively the time it takes to move to the target area is a function
of the ratio between the distance of the target and the width of
the target.

Rozek Recitation 13



Refactoring
UI Design

Efficiency

Try to minimize the number of clicks needed to perform an
action.

Avoid deep hierarchies.

Make important targets big and nearby

Provide shortcuts

Rozek Recitation 13



Refactoring
UI Design

Human Perception

Response time of less than 100ms feels instantaneous

10fps is enough to perceive an image as moving.

8% of all males are red-green color blind.

Rozek Recitation 13



Refactoring
UI Design

Satisfaction

Make system state visible

Give prompt feedback (less than 100ms)

Look ”modern”

Rozek Recitation 13



Refactoring
UI Design

Prototyping

A prototype is a draft version that allows users to explore ideas and
features before investing time and money into more permanent
development.

A proof-of-principle prototype serves to verify some key
functional aspects of the intended design, but usually does not
have all the functionality of the final product.

A working prototype represents all or nearly all of the
functionality of the final product.

A visual prototype represents the size and appearance, but not
the functionality, of the intended design.

A functional prototype captures both function and appearance
of the intended design, though it may be created with
different techniques and even different scale from final design.

Rozek Recitation 13



Refactoring
UI Design

User Testing

Start with a prototype

Write up a few representative tasks

Find a few representative users

Watch them do tasks with the prototype

Rozek Recitation 13



Refactoring
UI Design

How to watch users

Brief the user first

Ask the user to think out loud

Don’t talk or make faces during their tasks.

Take notes of any confusions or non-optimality.

Rozek Recitation 13



Refactoring
UI Design

Any Questions?

Rozek Recitation 13


	Refactoring
	UI Design

