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Technical Debt

Technical debt refers to the cost of picking a simpler solution
as opposed to a maintainable one.

As a project progresses, it may incur ”interest” making it
more difficult to implement changes.

Commonly caused by:

Business Pressures

Insufficient Specifications

Tightly coupled components
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Antipatterns

An anti-pattern is a common rseponse to a recurring problem that
is usually ineffective or counterproductive.

Examples include:

Big ball of mud: Lack of design

God Class: One class handles everything.

Poltergeists: Ephemeral controller classes that only exist to
invoke other methods on classes.
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Code Smells

Similar to antipatterns, a code smell indicates potential techincal
debt within the codebase.

Five categories of code smells (by Mika Mäntylä):

The Bloaters: Components too large to handle.

The Object-Orientation Abusers: Not making use of OO
features such as polymorphism.

The Change Preventers: Hinders further development.

The Dispensibles: Unnecessary components that should be
removed.

The Couplers: Captures high dependency between multiple
classes.
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Example Code Smells

The Bloaters:

Large Class, Long Parameter List

Data Clumps: Groups of variables passed around together in a
program. It should be an object instead.

The Object-Orientation Abusers:

Refused Bequest: An overriding of a method that is not a true
function subtype.

The Change Preventers:

Shotgun surgery : A single change requires changes to
multiple classes.
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Example Code Smells

The Dispensibles:

Duplicated Code, Dead Code

Lazy class / freeloader: a class that does too little.

The Couplers:

Feature envy: a class that uses methods of another class
excessively.

Inappropriate intimacy: a class that has dependencies on
implementation details of another class.
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Static Code Analysis

Static code analysis is a methodology of analyzing code without
executing it. Commonly called linters, these programs attempt to
find bugs, stylistic errors, and code smells.

Examples for Java:

Checkstyle: Style checking tool.

Spotbugs: Static analysis tool for fidning bugs.
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Refactoring

Refactoring is the process of restructuring code without changing
its behavior.

There are two primary benefits:

Maintainability: Make it easier to understand.

Extensibility: Make it easier to modifier in the future.

Refactoring Techniques:

Extract Method

Move Method

Replace temp with query

Replace type code with State/Strategy
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Refactoring Techniques

The three most common techniques are abstraction, splitting, and
relocation.

Splitting involves the breaking apart of large classes or methods.

Relocation involves the renaming or moving of a component up the
superclass or subclass.

Abstraction techniques include:

Encapsulate Field (Getters/Setters)

Generalize Type (Generics)

Replace Type code with State/Strategy

Replace conditional with Polymorphism
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Extract Method

A splitting technique used to break up logical chunks into separate
methods.

Approach:

1 Create a new method.

2 Move the extracted code to the new method.

3 Any referenced variables that are not declared in the extracted
code, make into a parameter.

4 Return parameters that are modified and used after the
extracted component.

5 Replace the extracted code with a method call.

6 Compile and test.
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Move Method

A relocation technique used to decouple classes and move a
method to a more appropriate location.

Approach:

1 Declare the method in the target class.

2 Appropriately copy the code from the source class to the
target class.

3 Do take note of the (sub/super)-classes to capture all
declarations of the method.

4 Turn the original method to a delegating method.

5 Compile and test.
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Replace Temp with Query

A splitting technique that deals with side calculations and making
it so that temporary variables are not inappropriately reused.

Approach:

1 Identify the temporary variable representing a side calculating.

2 Declare the type as final

3 Capture the calculation of that variable into a method (which
we call query). Replace all occurrences of the side calculation
with the query.

4 Note that the query method should be free of side effects.

5 Compile and test.
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State Design Pattern

A state design pattern is commonly used to have behavior differ
depending on some state.

Useful for when:

Creating subclasses are not ideal.

Objects may change between multiple states throughout
runtime.
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State Design Pattern Usage

Transform:

public class Person {

private String name;

private int mood;

}

To:

public class Person {

private String name;

private MoodType mood;

}

MoodType would then be an abstract class which is extended for
each type of mood.

Commonly used with the ”Replace conditional with
Polymorphism” technique.
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UI Design
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Usability

Usability captures the capacity for a system to allow users to
perform tasks safely, effectively, and efficiently while enjoying the
experience.
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Components of Usability

From Jakob Nielsen:

Learnability: How easy is it to accomplish basic tasks on first
encounter?

Efficiency: Once users have learned the design, how quickly
can they perform tasks?

Memorability: When users return to the design after a period
of not using it, how easily can they re-establish proficiency?

Errors: How many errors do users make, how severe are these
errors, and how easily can they recover from the errors?

Satisfaction: How pleasant is it to use the design?
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Extra Components

The US government in addition to the ones in the last slide also
include:

Desirable: Image, identity, brand, and other design elements
are used to evoke emotion and appreciation

Findable: Content needs to be navigable and locatable onsite
and offsite

Accessible: Content needs to be accessible to people with
disabilities

Credible: Users must trust and believe what you tell them
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Learnability & Memorability

Learnability:

People normally do not learn a complete interface before using
it.

Aim for consistent design and behavior.

Memorability:

Use common terminology. Avoid jargon.

Use icons wisely
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Errors

Avoid mode errors.

Use confirmation windows sparingly.

Are errors few and recoverable?

Add an undo option.
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Fitt’s Law

Fitt’s Law is a predictive model of human movement used to
model the act of pointing.

Intuitively the time it takes to move to the target area is a function
of the ratio between the distance of the target and the width of
the target.
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Efficiency

Try to minimize the number of clicks needed to perform an
action.

Avoid deep hierarchies.

Make important targets big and nearby

Provide shortcuts
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Human Perception

Response time of less than 100ms feels instantaneous

10fps is enough to perceive an image as moving.

8% of all males are red-green color blind.
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Satisfaction

Make system state visible

Give prompt feedback (less than 100ms)

Look ”modern”
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Prototyping

A prototype is a draft version that allows users to explore ideas and
features before investing time and money into more permanent
development.

A proof-of-principle prototype serves to verify some key
functional aspects of the intended design, but usually does not
have all the functionality of the final product.

A working prototype represents all or nearly all of the
functionality of the final product.

A visual prototype represents the size and appearance, but not
the functionality, of the intended design.

A functional prototype captures both function and appearance
of the intended design, though it may be created with
different techniques and even different scale from final design.
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User Testing

Start with a prototype

Write up a few representative tasks

Find a few representative users

Watch them do tasks with the prototype
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How to watch users

Brief the user first

Ask the user to think out loud

Don’t talk or make faces during their tasks.

Take notes of any confusions or non-optimality.
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Any Questions?
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