Recitation 3

Brandon Rozek
rozekbQ@rpi.edu

Rensselaer Polytechnic Institute, Troy, NY, USA

January 2022

Rozek Recitation 3

mailto:rozekb@rpi.edu

Outline

Two things:
e Java

@ Reasoning

Rozek Recitation 3

Java

Rozek Recitation 3

Compilers

@ Compilers translates code written in a source language to a
target language.

@ Typically, the target language is considered " lower level” and
machine dependent such as assembly, object, or machine code.

@ Translating code to another higher-level target language is
often called transpilation.

@ Hence, Java is often considered a Hybrid language.

Rozek Recitation 3

Interpreters

@ An interpreter takes instructions written in a programming
language and directly executes them.

@ A language that does not require a compilation step is often
called an interpreted language.

Rozek Recitation 3

What does Java do?

@ Java requires compilation to a target language called Java
bytecode.

@ The Java bytecode is then interpreted with the Java Virtual
Machine (JVM)

Rozek Recitation 3

Some Nuances...

@ The JVM continously analyzes executions during runtime and
decides to compile commonly executed paths using a
technique called just-in-time (JIT) compilation.

o Note that compilation takes time, so there’s often a balance!

The previous form of compilation where it happens before runtime
is called ahead-of-time (AOT) compilation.

Rozek Recitation 3

Subtype Polymorphism

Java supports subtype polymorphism which allows the programmer
to use a subclass where a super class is expected.

Pet[] pets = new Pet[5];
pets[0] = new Cat("Pablo");
pets[1] = new Dog("Jackie");

Assuming that the classes Cat and Dog extend or are subtypes of
Pet.

Rozek Recitation 3

Static Binding

@ Associating a name with a method or field is called binding.

e Static binding occurs at compile time and cannot be
overridden.

@ In Java, methods and fields that use the keywords private,
final, or static are bound statically.

Rozek Recitation 3

Dynamic Binding

@ Dynamic binding associates names with methods or fields
during runtime.

@ Instead of the type information being used to decide which
method to run, the object is inspected instead.

Rozek Recitation 3

Overloaded Methods

@ Overloaded methods is a language feature that allows for the
same method name with different argument types.

@ These are bound with statically.

class Animal {
static void eat() {
System.out.println("Animal jis eating,
nothing...");
}
static void eat(Food f) {
System.out.println("Animal is having a great
meal!");

Rozek Recitation 3

Overridden Methods

@ Overridden methods changes the method called when a
subclass uses the same method name as the superclass.

@ These methods are bound dynamically.
@ Argument types must be the same but return type may differ.

public class Animal {

void eat() {
System.out.println("Animal not hungry.");

}

}

class Dog extends Animal {
@0verride

void eat() {
System.out.println("Dog eat.");

}

Rozek Recitation 3

Question: What is the output?

class Animal {
static void eat() {
System.out.println("Animal eat.");
}
}

class Dog extends Animal {
public static void main(String args[]) {
Animal a = new Dog();
a.eat();
}
static void eat() {
System.out.println("Dog Yum!");

}

Rozek Recitation 3

Dispatching

e Binding associates a name with a method/field.

o Dispatching determines which method to call given its
arguments.

Rozek Recitation 3

Reasoning

Reasoning through Code

Rozek Recitation 3

Reasoning

Preconditions/Postconditions

@ Precondition: Conditions that must hold before the code
executes.

@ Postcondition: Conditions that must hold after the code
executes.

Rozek Recitation 3

Reasoning

Forward /Backward Reasoning

@ Forward Reasoning: Given a precondition, does a
postcondition hold?

@ Backward Reasoning: Given a postcondition, what is the
precondition?

Rozek Recitation 3

Reasoning

Forward Reasoning Example

Precondition: {x < -3 && y ==x}

X =X - 4;
y = x + abs(x);
z=(y +5) * (x +2);

What is the postcondition?

Rozek Recitation 3

Reasoning

Backward Reasoning Example

What is the precondition?

t =2 % g;
r=w+ 4;
s 2 *x s + w;

Postcondition: {r > s && s > t}

Rozek Recitation 3

Reasoning

Practice: Forward Reasoning

Precondition: { s <2 && w >0}
t =2 % g;
r=w+ 4

s =2 %38+ W

What is the postcondition?

Rozek Recitation 3

Reasoning

Practice: Backwards Reasoning

What is the precondition?

X =X - 4;
y = x + abs(x);
z=(y +5) * (x +2);

Postcondition: {x < —7 && y == 0 && z < —25}

Rozek Recitation 3

Reasoning

Reasoning through If Statements

@ Reasoning through if statements is similar to proof by cases.

@ Requires keeping track of separate states of a program.

if (A) {
// Postcondition B
} else {

// Postcondition C
}
There are multiple ways to tackle it in order of its expressiveness:
o Keep track of it via implications. {A = B && 'A = C}
e Treat it as a disjunction. {B||C}

@ Find commonalities between B and C

Rozek Recitation 3

Reasoning

Example

What is the precondition?

if (x> 0) {
X =X + 6;
} else {
x=x/ 2;
}

Postcondition: {|x| < 7}

Rozek Recitation 3

Reasoning

Practice:

Precondition: {|x| > 5}

if (x > 0) {
x =3 - x;
}
else {
x=x - 1;
}

What is the postcondition?

Rozek Recitation 3

Reasoning

Reasoning through Loops

@ A Joop invariant is a property that is held at the beginning,
after each iteration, and at the end of a loop.

@ A good loop invariant should involve the loop variable and the
postcondition.

@ The negation of the loop condition (L) and the invariant (/)
must imply the postcondition (P) at exit. L. && | = P.

@ We often prove loop invariants using induction.

Rozek Recitation 3

Reasoning

Example:

// Precondition: a >= 0 && b >= 0
int mul(int a, int b) {
int x = 0;
int p = 0;
while (p < b) {
X =X + a;

pP=p+1
}
return Xx;
}
// Postcondition: x == a * b

Rozek Recitation 3

Reasoning

Hoare Triples

@ Hoare Logic is the formalization of reasoning through pre and
post conditions.

e {Pre}Code{Post} is a succinct representation called a Hoare
triple.

Rozek Recitation 3

Reasoning

Weak vs Strong Conditions

@ A condition Q is weaker than condition P if P = @ but
Q=% P.

@ We see this often with inequalities: x < -5 =— x <0

Rozek Recitation 3

Reasoning

Any Questions?

Rozek Recitation 3

	Java
	Reasoning

