<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <meta name="author" content="Brandon Rozek"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="robots" content="noindex" /> <title>Brandon Rozek</title> <link rel="stylesheet" href="themes/bitsandpieces/styles/main.css" type="text/css" /> <link rel="stylesheet" href="themes/bitsandpieces/styles/highlightjs-github.css" type="text/css" /> </head> <body> <aside class="main-nav"> <nav> <ul> <li class="menuitem "> <a href="index.html%3Findex.html" data-shortcut=""> Home </a> </li> <li class="menuitem "> <a href="index.html%3Fcourses.html" data-shortcut=""> Courses </a> </li> <li class="menuitem "> <a href="index.html%3Flabaide.html" data-shortcut=""> Lab Aide </a> </li> <li class="menuitem "> <a href="index.html%3Fpresentations.html" data-shortcut=""> Presentations </a> </li> <li class="menuitem "> <a href="index.html%3Fresearch.html" data-shortcut=""> Research </a> </li> <li class="menuitem "> <a href="index.html%3Ftranscript.html" data-shortcut=""> Transcript </a> </li> </ul> </nav> </aside> <main class="main-content"> <article class="article"> <h1>Bayesian Statistics</h1> <h2>Rules of Probability</h2> <p>Probabilities must be between zero and one, i.e., $0≤P(A)≤1$ for any event A.</p> <p>Probabilities add to one, i.e., $\sum{P(X_i)} = 1$</p> <p>The complement of an event, $A^c$, denotes that the event did not happen. Since probabilities must add to one, $P(A^c) = 1 - P(A)$</p> <p>If A and B are two events, the probability that A or B happens (this is an inclusive or) is the probability of the union of the events: $$ P(A \cup B) = P(A) + P(B) - P(A\cap B) $$ where $\cup$ represents union ("or") and $\cap$ represents intersection ("and"). If a set of events $A<em>i$ are mutually exclusive (only one event may happen), then $$ P(\cup</em>{i=1}^n{A<em>i}) = \sum</em>{i=1}^n{P(A_i)} $$</p> <h2>Odds</h2> <p>The odds for event A, denoted $\mathcal{O}(A)$ is defined as $\mathcal{O}(A) = P(A)/P(A^c)$ </p> <p>This is the probability for divided by probability against the event</p> <p>From odds, we can also compute back probabilities $$ \frac{P(A)}{P(A^c)} = \mathcal{O}(A) $$</p> <p>$$ \frac{P(A)}{1-P(A)} = \mathcal{O}(A) $$</p> <p>$$ \frac{1 -P(A)}{P(A)} = \frac{1}{\mathcal{O}(A)} $$</p> <p>$$ \frac{1}{P(A)} - 1 = \frac{1}{\mathcal{O}(A)} $$</p> <p>$$ \frac{1}{P(A)} = \frac{1}{\mathcal{O}(A)} + 1 $$</p> <p>$$ \frac{1}{P(A)} = \frac{1 + \mathcal{O}(A)}{\mathcal{O}(A)} $$</p> <p>$$ P(A) = \frac{\mathcal{O}(A)}{1 + \mathcal{O}(A)} $$</p> <h2>Expectation</h2> <p>The expected value of a random variable X is a weighted average of values X can take, with weights given by the probabilities of those values. $$ E(X) = \sum_{i=1}^n{x_i * P(X=x_i)} $$</p> <h2>Frameworks of probability</h2> <p>Classical -- Outcomes that are equally likely have equal probabilities</p> <p>Frequentist -- In an infinite sequence of events, what is the relative frequency</p> <p>Bayesian -- Personal perspective (your own measure of uncertainty)</p> <p>In betting, one must make sure that all the rules of probability are followed. That the events are "coherent", otherwise one might construct a series of bets where you're guaranteed to lose money. This is referred to as a Dutch book.</p> <h2>Conditional probability</h2> <p>$$ P(A|B) = \frac{P(A\cup B)}{P(B)} $$</p> <p>Where $A|B$ denotes "A given B"</p> <p>Example from lecture:</p> <p>Suppose there are 30 students, 9 of which are female. From the 30 students, 12 are computer science majors. 4 of those 12 computer science majors are female $$ P(Female) = \frac{9}{30} = \frac{3}{10} $$</p> <p>$$ P(CS) = \frac{12}{30} = \frac{2}{5} $$</p> <p>$$ P(F\cap CS) = \frac{4}{30} = \frac{2}{15} $$</p> <p>$$ P(F|CS) = \frac{P(F \cap CS)}{P(CS)} = \frac{2/15}{2/5} = \frac{1}{3} $$</p> <p>An intuitive way to think about a conditional probability is that we're looking at a subsegment of the original population, and asking a probability question within that segment $$ P(F|CS^c) = \frac{P(F\cap CS^c)}{PS(CS^c)} = \frac{5/30}{18/30} = \frac{5}{18} $$ The concept of independence is when one event does not depend on another. $$ P(A|B) = P(A) $$ It doesn't matter that B occurred.</p> <p>If two events are independent then the following is true $$ P(A\cap B) = P(A)P(B) $$ This can be derived from the conditional probability equation.</p> <h2>Conditional Probabilities in terms of other conditional</h2> <p>Suppose we don't know what $P(A|B)$ is but we do know what $P(B|A)$ is. We can then rewrite $P(A|B)$ in terms of $P(B|A)$ $$ P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)} $$ Let's look at an example of an early test for HIV antibodies known as the ELISA test. $$ P(+ | HIV) = 0.977 $$</p> <p>$$ P(- | NO_HIV) = 0.926 $$</p> <p>As you can see over 90% of the time, this test was accurate.</p> <p>The probability of someone in North America having this disease was $P(HIV) = .0026$</p> <p>Now let's consider the following problem: the probability of having the disease given that they tested positive $P(HIV | +)$ $$ P(HIV|+) = \frac{P(+|HIV)P(HIV)}{P(+|HIV)P(HIV) + P(+|NO_HIV){P(NO_HIV)}} $$</p> <p>$$ P(HIV|+) = \frac{(.977)(.0026)}{(.977)(.0026) + (1-.977)(1-.0026)} $$</p> <p>$$ P(HIV|+) = 0.033 $$</p> <p>This example looked at Bayes Theorem for the two event case. We can generalize it to n events through the following formula $$ P(A|B) = \frac{P(B|A_1){(A<em>1)}}{\sum</em>{i=1}^{n}{P(B|A_i)}P(A_i)} $$</p> <h2>Bernoulli Distribution</h2> <p>~ means 'is distributed as'</p> <p>We'll be first studying the Bernoulli Distribution. This is when your event has two outcomes, which is commonly referred to as a success outcome and a failure outcome. The probability of success is $p$ which means the probability of failure is $(1-p)$ $$ X \sim B(p) $$</p> <p>$$ P(X = 1) = p $$</p> <p>$$ P(X = 0) = 1-p $$</p> <p>The probability of a random variable $X$ taking some value $x$ given $p$ is $$ f(X = x | p) = f(x|p) = p^x(1-p)^{1 - x}I $$ Where $I$ is the Heavenside function</p> <p>Recall the expected value $$ E(X) = \sum_{x_i}{x_iP(X=x_i)} = (1)p + (0)(1-p) = p $$ We can also define the variance of Bernoulli $$ Var(X) = p(1-p) $$</p> <h2>Binomial Distribution</h2> <p>The binomial distribution is the sum of n <em>independent</em> Bernoulli trials $$ X \sim Bin(n, p) $$</p> <p>$$ P(X=x|p) = f(x|p) = {n \choose x} p^x (1-p)^{n-x} $$</p> <p>$n\choose x$ is the combinatoric term which is defined as $$ {n \choose x} = \frac{n!}{x! (n - x)!} $$</p> <p>$$ E(X) = np $$</p> <p>$$ Var(X) = np(1-p) $$</p> <h2>Uniform distribution</h2> <p>Let's say X is uniformally distributed $$ X \sim U[0,1] $$</p> <p>$$ f(x) = \left{ \begin{array}{lr} 1 & : x \in [0,1]\ 0 & : otherwise \end{array} \right. $$</p> <p>$$ P(0 < x < \frac{1}{2}) = \int_0^\frac{1}{2}{f(x)dx} = \int_0^\frac{1}{2}{dx} = \frac{1}{2} $$</p> <p>$$ P(0 \leq x \leq \frac{1}{2}) = \int_0^\frac{1}{2}{f(x)dx} = \int_0^\frac{1}{2}{dx} = \frac{1}{2} $$</p> <p>$$ P(x = \frac{1}{2}) = 0 $$</p> <h2>Rules of probability density functions</h2> <p>$$ \int_{-\infty}^\infty{f(x)dx} = 1 $$</p> <p>$$ f(x) \ge 0 $$</p> <p>$$ E(X) = \int_{-\infty}^\infty{xf(x)dx} $$</p> <p>$$ E(g(X)) = \int{g(x)f(x)dx} $$</p> <p>$$ E(aX) = aE(X) $$</p> <p>$$ E(X + Y) = E(X) + E(Y) $$</p> <p>If X & Y are independent $$ E(XY) = E(X)E(Y) $$</p> <h2>Exponential Distribution</h2> <p>$$ X \sim Exp(\lambda) $$</p> <p>Where $\lambda$ is the average unit between observations $$ f(x|\lambda) = \lambda e^{-\lambda x} $$</p> <p>$$ E(X) = \frac{1}{\lambda} $$</p> <p>$$ Var(X) = \frac{1}{\lambda^2} $$</p> <h2>Uniform (Continuous) Distribution</h2> <p>$$ X \sim [\theta_1, \theta_2] $$</p> <p>$$ f(x|\theta_1,\theta_2) = \frac{1}{\theta_2 - \theta<em>1}I</em>{\theta_1 \le x \le \theta_2} $$</p> <h2>Normal Distribution</h2> <p>$$ X \sim N(\mu, \sigma^2) $$</p> <p>$$ f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2} $$</p> <p>$$ E(X) = \mu $$</p> <p>$$ Var(X) = \sigma^2 $$</p> <h2>Variance</h2> <p>Variance is the squared distance from the mean $$ Var(X) = \int_{-\infty}^\infty {(x - \mu)^2f(x)dx} $$</p> <h2>Geometric Distribution (Discrete)</h2> <p>The geometric distribution is the number of trails needed to get the first success, i.e, the number of Bernoulli events until a success is observed. $$ X \sim Geo(p) $$</p> <p>$$ P(X = x|p) = p(1-p)^{x-1} $$</p> <p>$$ E(X) = \frac{1}{p} $$</p> <h2>Multinomial Distribution (Discrete)</h2> <p>Multinomial is like a binomial when there are more than two possible outcomes.</p> <p>$$ f(x_1,...,x_k|p_1,...,p_k) = \frac{n!}{x_1! ... x_k!}p_1^{x_1}...p_k^{x_k} $$</p> <h2>Poisson Distribution (Discrete)</h2> <p>The Poisson distribution is used for counts. The parameter $\lambda > 0$ is the rate at which we expect to observe the thing we are counting. $$ X \sim Pois(\lambda) $$</p> <p>$$ P(X=x|\lambda) = \frac{\lambda^xe^{-\lambda}}{x!} $$</p> <p>$$ E(X) = \lambda $$</p> <p>$$ Var(X) = \lambda $$</p> <h2>Gamma Distribution (Continuous)</h2> <p>If $X_1, X_2, ..., X_n$ are independent and identically distributed Exponentials,waiting time between success events, then the total waiting time for all $n$ events to occur will follow a gamma distribution with shape parameter $\alpha = n$ and rate parameter $\beta = \lambda$ $$ Y \sim Gamma(\alpha, \beta) $$</p> <p>$$ f(y|\alpha,\beta) = \frac{\beta^n}{\Gamma(\alpha)}y^{n-1}e^{-\beta y}I_{y\ge0}(y) $$</p> <p>$$ E(Y) = \frac{\alpha}{\beta} $$</p> <p>$$ Var(Y) = \frac{\alpha}{\beta^2} $$</p> <p>Where $\Gamma(x)$ is the gamma function. The exponential distribution is a special case of the gamma distribution with $\alpha = 1$. As $\alpha$ increases, the gamma distribution more closely resembles the normal distribution.</p> <h2>Beta Distribution (Continuous)</h2> <p>The beta distribution is used for random variables which take on values between 0 and 1. For this reason, the beta distribution is commonly used to model probabilities. $$ X \sim Beta(\alpha, \beta) $$</p> <p>$$ f(x|\alpha,\beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{n -1}(1 - x)^{\beta - 1}I_{{0 < x < 1}} $$</p> <p>$$ E(X) = \frac{\alpha}{\alpha + \beta} $$</p> <p>$$ Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha+\beta+1)} $$</p> <p>The standard uniform distribution is a special case of the beta distribution with $\alpha = \beta = 1$</p> <h2>Bayes Theorem for continuous distribution</h2> <p>$$ f(\theta|y) = \frac{f(y|\theta)f(\theta)}{\int{f(y|\theta)f(\theta)d\theta}} $$</p> </article> </main> <script src="themes/bitsandpieces/scripts/highlight.js"></script> <script src="themes/bitsandpieces/scripts/mousetrap.min.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], processEscapes: true } }); </script> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <script> hljs.initHighlightingOnLoad(); document.querySelectorAll('.menuitem a').forEach(function(el) { if (el.getAttribute('data-shortcut').length > 0) { Mousetrap.bind(el.getAttribute('data-shortcut'), function() { location.assign(el.getAttribute('href')); }); } }); </script> </body> </html>