Recitation 6

Brandon Rozek
rozekbQ@rpi.edu

Rensselaer Polytechnic Institute, Troy, NY, USA

February 2022

Rozek Recitation 6


mailto:rozekb@rpi.edu

Outline

Two things:
o ADT Methods

@ Representation Invariants

Rozek Recitation 6



Logistics

@ First exam is next week.

@ Let me know if you have any topics that you want me to go
over.

Rozek Recitation 6



Running Example

@ | have an amateur radio license from the
FCC, callsign KN4VYS.

@ | am particularly interested in software
defined radio (SDR)

@ To make some of these concepts concrete,
let's apply them to building an SDRI!

D
1| —

i B
AN

Rozek Recitation 6



ADT Methods

Side Effects

@ A method is said to have a side effect if it modifies some state
outside its local context.

@ Examples include: modifying object fields, printing to the
screen, taking user input, network calls.

A program is not useful unless it has a side effect of some kind.

Rozek Recitation 6



ADT Methods

Reasoning through Side Effects

@ Since side effects exist outside the method you're considering,
this makes them difficult to reason through.

@ The most common technique used to deal with side effects is
through immutability and exceptions.

Rozek Recitation 6



ADT Methods

Personal Thoughts

@ The functional programming community have made great
strides in dealing with side effects primarily through monadic
structures. (Feel free to ask me!)

@ Though a simple recommendation | have is to decouple
computation from side effects.

@ e.g A method radiate() should not also print to the screen

Rozek Recitation 6



ADT Methods

Reasoning through Abstract Data Types

@ In fact, methods that are small and follow the
single-responsibility principle are often easier to reason about
and prove!

o At first, it'll feel verbose and repetitive. Later on you'll learn
techniques which are more concise.

Rozek Recitation 6



ADT Methods

Example: Radio Overview

A radio (more specifically a transciever) contains both a receiver
and a transmitter in one unit.

Receiver
- Analog-‘to-big?‘tal Conversion
- Demodulation
- Decode
- le/ ‘through Speakers

o | Transmitter

- Receive Speaker inpu‘t

- Encode

- Modulo“te_

- Dig?‘to\l-‘to-Ano\log Conversion

Rozek Recitation 6



ADT Methods

Example: Connecting to a Repeater

Amateur radio operators extend their reach by connecting to a
repeater. In the next slides, we'll analyze channels.

(@)

- RxFrequency NaTY:
- T. N
xFrequency RxFrequency = 145.1MHz
TxFrequency = 194,57 MH=
KNAVYS Repeater

Rozek Recitation 6



ADT Methods

ADT Methods

We group the access methods of an ADT into:

@ Creators: Creates a brand new object.
@ Observers: Returns information about this object.

@ Producers: Returns a new object of this type by performing
operations on the current object.
@ Mutators: Changes this objects fields.

Note: Immutable ADTs do not have mutators.

Rozek Recitation 6



ADT Methods

Creators

@ Another name for constructors

@ No preexisting state is changed, therefore modifies is none.

public Channel(double freq);
public Channel(double rxFreq, double txFreq);

Rozek Recitation 6



ADT Methods

Observers

@ Returns information about this which often is of a different
type (int, String, etc)

@ Should have no side effects.
public bool isSimplex() {

return this.rxFrequency == this.txFrequency;

}

Rozek Recitation 6



ADT Methods

Producers

@ Returns an object of the same type, often with different fields.
@ This technique is very common in immutable objects.
@ Should have no side effects.

public Channel toDuplex(double txFrequency) {

return new Channel(this.rxFrequency, txFrequecy)

}

Rozek Recitation 6



ADT Methods

Mutators

@ Changes internal state of this
@ Often does not return anything
public void changeRxFrequency(double frequency) {

this.rxFrequency = frequency,

3

Rozek Recitation 6



ADT Methods

Immutability

@ In immutable objects, instead of changing state through
mutators, producers are used.

// Alternative to mutator
public Channel changeRxFrequency(double frequency) {
return Channel (frequency, this.txFrequency);

3

Java strings are immutable and follow this pattern.

Rozek Recitation 6



ADT Methods

Immutability

@ Big benefit to immutable objects is that they are thread safe
by default!

@ Slight performance detriment since memory gets copied.

@ For correctness, need to make sure memory is copied and not
referenced in new object.

Rozek Recitation 6



Representation Invariant

Representation Invariant

Rozek Recitation 6



Representation Invariant

Representation Invariant

@ Similar to how we use loop invariants to reason about loops,
we'll use representation invariants to reason about objects.

@ Indicates whether data representation is well-formed.

@ Must hold before and after every method.

Example: this.frequency > 0

Rozek Recitation 6



Representation Invariant

Abstraction Function

@ What does the data structure semantically mean?

o Example from class: array[2, 3, -1] represents —x2 4 3x + 2

Rozek Recitation 6



Representation Invariant

Representation Exposure

@ Representation exposure is unintentional external access to
the underlying representation of an object.

@ Allows access without going through object’s public methods

@ Representation exposure can break representation invariants!

Rozek Recitation 6



Representation Invariant

Example

Java does not provide any guarantees with the private keyword.

public class Channel {

private double rxFrequency;

private double txFrequency;

public Channel(double freq) {
if (freq <= 0) {

throw new IllegalArgumentException();

}
this.rxFrequency = freq;
this.txFrequency = freq;

}
public static void main(String[] args) {

Channel ¢ = new Channel(14.54);
c.rxFrequency = -5.0; // Bypassed our check :(

Rozek Recitation 6



Representation Invariant

Immutability Solution

With the final keyword, immutability is enforced.

public class Channel {

final private double rxFrequency;

final private double txFrequency;

public Channel(double freq) {
if (freq <= 0) {

throw new IllegalArgumentException();

}
this.rxFrequency = freq;
this.txFrequency = freq;

}

// Add producer method setFreq

public static void main(String[] args) {
Channel ¢ = new Channel(14.54);
c.rxFrequency = -5.0; // Compiler error

Rozek Recitation 6



Representation Invariant

Beware of References

public class Channels {

private ArrayList<Channel> cs;

public Channels(ArrayList<Channel> cs_param) {
this.cs = cs_param;

}

public Channels add(Channel c) {
Channels new_channels = new Channels(this.cs);
new_channels.cs.add(c);
return new_channels;

}

public static void main(String[] args) {
Channel n2ty = new Channel(145.17);
Channels empty_channels = new Channels(new

ArrayList<Channel>(););

Channels some_channels = empty_channels.add(n2ty);
System.out.println(empty_channels.cs.size());

Rozek Recitation 6



Representation Invariant

Recommendation: Copy

@ When dealing with mutable producers, always make sure you
perform a copy!

@ Do note the difference between a shallow and a deep copy...

Rozek Recitation 6



Representation Invariant

Defensive Programming

If you're dealing with mutable objects:
@ Assume your invariants will be violated!

@ Check the invariants on method entry, exit, etc.

Rozek Recitation 6



Representation Invariant

Checking Invariants with Assertions

@ Assertions can be used to check invariant satisfaction.

@ java runs with assertions disabled by default (java -ea to
enable)

@ When assertions are not satisfied an AssertionError
exception is thrown.

Rozek Recitation 6



Representation Invariant

Example

public Channel toDuplex(double txFreq) {
assert this.rxFrequency > 0;
assert txFreq > 0;
return new Channel(this.rxFrequency, txFreq);

Rozek Recitation 6



Representation Invariant

Defensive Programming - Preconditions

@ Recall that preconditions are what is assumed to be true
before the method call.

@ If its not true then all bets are off!

@ But as we saw with defensive programming constraints will
often get violated.

Rozek Recitation 6



Representation Invariant

Preconditions and Exceptions

@ This class recommends to have weaker preconditions in order
to strengthen the specification.

@ Make use of exceptions when inputs are invalid!

There might be some cases where weaker preconditions are undesirable...

Rozek Recitation 6



Representation Invariant

Client Code: Try/Catch/Finally

The exception pattern is quite common with |/O operations.

public void mute_transmit() {

Socket s;
try { s = new Socket(host, port); /* ... */ }
catch (ConnectionException e) { /* ... */ }

finally { s.close(); }

Rozek Recitation 6



Representation Invariant

Propagate Exceptions

In Java, checked exceptions must be either dealt or propogated by
the caller. To propogate, use the throws keyword in the method
declaration.

class Channels {

/* Declarations from before... */

public void loadConfigFromFile(String filename)
throws IOException {
FileReader file = new FileReader(filename);
BufferedReader filelnput = new

BufferedReader (file);

fileInput.readLine(); // Might throw IOException
fileInput.close(Q);

Rozek Recitation 6



Representation Invariant

Any Questions?

Rozek Recitation 6



	ADT Methods
	Representation Invariant

