
JavaDoc
Specifications

ADTs

Recitation 5

Brandon Rozek
rozekb@rpi.edu

Rensselaer Polytechnic Institute, Troy, NY, USA

February 2022

Rozek Recitation 5

mailto:rozekb@rpi.edu

JavaDoc
Specifications

ADTs

Outline

Three things:

JavaDoc

Specifications

Abstract Data Types

Rozek Recitation 5

JavaDoc
Specifications

ADTs

JavaDoc

JavaDoc is a documentation generator whose style has been
adopted as the industry standard. The standard tags in the
specification with the most common underlined are:

@author: Name of an author. (Multiple tags should be used
for multiple authors.)

@param: Name and description of a parameter. (Multiple
parameters should appear in the order of the signature of the
method)

@return: Return type along with permissible range of values

Rozek Recitation 5

JavaDoc
Specifications

ADTs

JavaDoc

The standard tags in the specification with the most common
underlined are:

@exception/@throws: An exception that may get thrown
along with a description of why.

@since: Version of the codebase where this is introduced.

@see: A link pointing to additional documentation.

@deprecated: Mark denoting that the component should no
longer be used.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

JavaDoc Example

/**

** @param degrees An arbitrary double representing an

angle in degrees.

** @return A double representing the degrees

normalized to the range [0, 360].

**/

public double normalizeDegrees(double degrees) {

return degrees - (Math.floor(degrees / 360) * 360);

}

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Additional Tags for PSoft

Many teams have a style guide or conventions for how they write
their specifications. For this class, we will require the following
tags:

@requires: The precondition or constraints.

@modifies: List of objects that may be modified by the
method.

@effects: Describes the final state (postcondition) of
modified objects.

Inspiration coming from Dafny and Hoare logic. Use none if a tag
above does not apply.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Example

/**

** @param c The customer’s shopping cart.

** @param i A shopping item.

** @requires i \in Inventory

** @modifies c

** @effects c = \old{c} union {item}

**/

public void addToCart(Cart c, Item i) {

c.add(i);

}

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Specifications

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Specification Strength

A specification A is stronger than B iff:

One of the following is true:

A has a weaker precondition
than B

A has a stronger
postcondition than B

Both of the following are true:

B does not have a weaker
precondition than A

B does not have a stronger
postcondition than A

A stronger specification is more tolerant of inputs and more strict
of outputs.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Specification Strength as Logic

Let us denote the precondition as P and the postcondition as Q:

If ((PB =⇒ PA) ∧ (QA =⇒ QB)) then A is stronger
than B.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Specification Strength Example

Spec A:

@return y such that y = array[index]

@throws ArrayIndexOutOfBoundsException

if index < 0 or index >= array.length

Spec B:

@requires 0 <= index < array.length

@return y such that y = array[index]

What can we say about the strength of these specifications?

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Specification Strength Practice

Spec C:

@requires index >= 0

@return y such that y = array[index]

@throws ArrayIndexOutOfBoundsException

if index >= array.length

Spec D:

@return y such that y = null or y = array[index]

What can we say about the strength of these specifications?

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Type Variances

Lets say we have classes Student and Person where Student is a
subtype of (<:) Person.

Now consider the composite classes C<Student> and C<Person>:

The relationship is covariant if C<Student> <: C<Person>

The relationship is contravariant if C<Person> <:
C<Student>

Bivariant is both covariant and contravariant.

Invariant is neither covariant nor contravariant.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Java Arrays are Covariant

In Java, Student[] <: Person[].

Any problems with this approach?

public class Person {

class Student extends Person {}

public static void main(String[] args) {

Student[] s = new Student[1];

// Allowed since Student[] <: Person[]

Person[] p = s;

p[0] = new Person();

}

}

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Generics are Invariant

The following won’t compile:

public class Person {

class Student extends Person {}

public static void main(String[] args) {

ArrayList<Student> s2 = new ArrayList<Student>();

ArrayList<Person> p2 = s2;

}

}

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Specification and Variance

If specification A is stronger than B then we know:

Input Contravariance

The inputs of A may be a supertype of the inputs of B
Weaker precondition, more tolerant inputs.

Output Covariance

The outputs of A may be a subtype of the outputs of B.
Stricter postcondition, doesn’t violate clients expectations.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Why?

Why do we care about specifications and
variances?

Liskov Principle of Substitutability:
An object with stronger specification
can be substituted for an object with
a weaker one without altering correct-
ness.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Java Modeling Language

A machine-checkable specification language inside Java comments.
Example derived from Wikipedia:

public class Banking {
private /∗@ spec public @∗/ int balance;
//@ public invariant balance >= 0;

//@ assignable balance;
//@ ensures balance == 0;
public Banking() {

this .balance = 0;
}

//@ requires 0 < amount;
//@ assignable balance;
//@ ensures balance == \old(balance) + amount;
public void credit (final int amount) {

this .balance += amount;
}

}

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Dafny Specification

method credit(amt: int, old_bal: int) returns

(new_bal: int)

requires 0 < amt

ensures new_bal == old_bal + amt

{

new_bal := old_bal + amt;

}

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Abstract Data Types (ADTs)

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Control Abstraction

This is where a method name, signature, and specification is
exposed to the client.

The implementation details is hidden from the user.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Data Abstraction

This is where the data representation of a class is hidden from
the user.

For example: How are Strings implemented in Java? Fixed
array of chars? Linked list?

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Abstract Data Types

An Abstract Data Type combines both control abstractions
and data abstractions.

In other words, it encapsulates an object and its operations.

Information hiding is a design principle that segregates and hides
the parts of a computer program likely to change.

Rozek Recitation 5

JavaDoc
Specifications

ADTs

More Dafny!

Let’s play around with Dafny and see if we can create a
banking class.

We’ll likely build on this in later recitations...

Rozek Recitation 5

JavaDoc
Specifications

ADTs

Any Questions?

Rozek Recitation 5

	JavaDoc
	Specifications
	ADTs

