mirror of
https://github.com/Brandon-Rozek/website.git
synced 2025-06-20 06:13:33 +00:00
Compare commits
No commits in common. "a92ed52f8f3f278157b922a8df1440a1582378fe" and "bc493c8c22352abfcfd3bd658cb5c8b5b524041c" have entirely different histories.
a92ed52f8f
...
bc493c8c22
1 changed files with 3 additions and 22 deletions
|
@ -37,20 +37,11 @@ $$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
(\forall x \phi) \implies \psi &\iff \neg (\forall x \phi) \vee \psi \tag{0.1} \\\\
|
(\forall x \phi) \implies \psi &\iff \neg (\forall x \phi) \vee \psi \tag{0.1} \\\\
|
||||||
&\iff (\exists x \neg \phi) \vee \psi \tag{2.2}\\\\
|
&\iff (\exists x \neg \phi) \vee \psi \tag{2.2}\\\\
|
||||||
&\iff \exists x (\neg \phi \vee \psi) \tag{1.2}\\\\
|
&\iff \exists x (\neg \phi \vee \psi) \tag{2.1}\\\\
|
||||||
&\iff \exists x (\phi \implies \psi) \tag{0.1}
|
&\iff \exists x (\neg \phi \implies \psi) \tag{0.1}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
**2.** Show that $(\exists x \phi) \implies \psi$ is equivalent to $\forall x (\phi \implies \psi)$
|
**2.** Show that $\phi \implies (\exists x \psi)$ is equivalent to $\exists x (\phi \implies \psi)$
|
||||||
$$
|
|
||||||
\begin{align*}
|
|
||||||
(\exists x \phi) \implies \psi &\iff \neg(\exists x \phi) \vee \psi \tag{0.1}\\\\
|
|
||||||
&\iff \forall x (\neg \phi) \vee \psi \tag{2.1}\\\\
|
|
||||||
&\iff \forall x (\neg \phi \vee \psi) \tag{1.1}\\\\
|
|
||||||
&\iff \forall x (\phi \implies \psi) \tag{0.1}
|
|
||||||
\end{align*}
|
|
||||||
$$
|
|
||||||
**3.** Show that $\phi \implies (\exists x \psi)$ is equivalent to $\exists x (\phi \implies \psi)$
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\phi \implies (\exists x \psi) &\iff \neg \phi \vee (\exists x \psi) \tag{0.1}\\\\
|
\phi \implies (\exists x \psi) &\iff \neg \phi \vee (\exists x \psi) \tag{0.1}\\\\
|
||||||
|
@ -60,13 +51,3 @@ $$
|
||||||
&\iff \exists x (\phi \implies \psi) \tag{0.1}
|
&\iff \exists x (\phi \implies \psi) \tag{0.1}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
**4.** Show that $\phi \implies (\forall x \psi)$ is equivalent to $\forall x (\phi \implies \psi)$
|
|
||||||
$$
|
|
||||||
\begin{align*}
|
|
||||||
\phi \implies (\forall x \psi) &\iff \neg \phi \vee (\forall x \psi) \tag{0.1}\\\\
|
|
||||||
&\iff \forall x(\psi) \vee \neg \phi \tag{symmetry} \\\\
|
|
||||||
&\iff \forall x (\psi \vee \neg \phi) \tag{1.1}\\\\
|
|
||||||
&\iff \forall x (\neg \phi \vee \psi) \tag{symmetry} \\\\
|
|
||||||
&\iff \forall x (\phi \implies \psi) \tag{0.1}
|
|
||||||
\end{align*}
|
|
||||||
$$
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue