From f0805644875c213fcb3a46cab5876ae723f64c70 Mon Sep 17 00:00:00 2001 From: Brandon Rozek Date: Sun, 19 Feb 2023 23:47:34 -0500 Subject: [PATCH] Truth Functional Expansions --- content/research/atp/_index.md | 3 +- .../atp/truth-functional-expansion.md | 47 +++++++++++++++++++ 2 files changed, 49 insertions(+), 1 deletion(-) create mode 100644 content/research/atp/truth-functional-expansion.md diff --git a/content/research/atp/_index.md b/content/research/atp/_index.md index 6e497fd..434ae18 100644 --- a/content/research/atp/_index.md +++ b/content/research/atp/_index.md @@ -5,4 +5,5 @@ description: Notes about Automated Theorem Proving More links coming soonish: - [Definitional CNF](definitional-cnf) -- [Davis Putnam](davis-putnam) \ No newline at end of file +- [Davis Putnam](davis-putnam) +- [Finding Counter-Models through Truth Functional Expansions](truth-functional-expansion) diff --git a/content/research/atp/truth-functional-expansion.md b/content/research/atp/truth-functional-expansion.md new file mode 100644 index 0000000..a5d25a4 --- /dev/null +++ b/content/research/atp/truth-functional-expansion.md @@ -0,0 +1,47 @@ +--- +title: Finding Counter-Models through Truth Functional Expansions +math: true +--- + +The best way to disprove a statement is to find a counter-example. +For first order formulas, the quantifiers are over some *universe of discourse* $\mathcal{D}$. + +For example, $\forall x, P(x)$ says that for every $x$ within the universe of discourse, $x$ has property $P$. Let's say that our universe of discourse consists of two elements $c_1$ and $c_2$. Then the statement $\forall x, P(x)$ is equivalent to $P(c_1) \wedge P(c_2)$. That is, both elements in the universe of discourse hold property $P$. This equivalence is called the *truth-functional expansion*. + +Let $\mathcal{D} = \\{ c_1, \dots, c_n \\}$ be the universe of discourse. Then the following equivalences hold: +$$ + \forall x P(x) \iff P(c_1) \wedge \dots \wedge P(c_n) +$$ +$$ + \exists x P(x) \iff P(c_1) \vee \dots \vee P(c_n) +$$ + +To find a counter-example, you'll need to find a model in which the formula does not hold. A model consists of a universe of discourse and whether or not each possible predicate holds. For example, let's take a binary predicate $F$. For a domain of discourse of size two, the following predicates may hold: $F(c_1, c_1), F(c_1, c_2), F(c_2, c_1), F(c_2, c_2)$. For any given model, each of those instantiations can hold or not, amounting to $2^4 = 16$ possible models for a domain of discourse of size $2$ with one binary predicate. + +Now let's find a counter-example for an invalid formula. Consider $\exists x F(x, x) \implies \forall x F(x, x)$. +To perform a truth functional expansion, we need to first convert to [prenex normal form](https://en.wikipedia.org/wiki/Prenex_normal_form). This works out to be $\forall x \forall y (F(x, x) \implies F(y, y))$ + +{{
}} +$$ +\begin{align*} +\exists x F(x, x) \implies \forall x F(x, x) &\iff \forall x (F(x, x) \implies \forall y F(y, y)) \\\\ +&\iff \forall x \forall y (F(x, x) \implies F(y, y)) +\end{align*} +$$ +{{
}} + +Let $\mathcal{D} = \\{ c_1 \\}$. The truth functional expansion is $F(c_1, c_1) \implies F(c_1, c_1)$. This is a tuatlogy so the formula is valid for domain of size 1. + +Now let $\mathcal{D} = \\{ c_1, c_2 \\}$. After removing the tautologies, the truth functional expansion works out to be $(F(c_1, c_1) \implies F(c_2, c_2)) \wedge (F(c_2, c_2) \implies F(c_1, c_1))$ + +{{
}} +$$ +\forall x \forall y (F(x, x) \implies F(y, y)) \\\\ +(\forall y (F(c_1, c_1) \implies F(y, y))) \wedge (\forall y (F(c_2, c_2) \implies F(y, y))) \\\\ +((F(c_1, c_1) \implies F(c_1, c_1)) \wedge (F(c_1, c_1) \implies F(c_2, c_2))) \wedge ((F(c_2, c_2) \implies F(c_1, c_1)) \wedge (F(c_2, c_2) \implies F(c_2, c_2))) \\\\ +(F(c_1, c_1) \implies F(c_2, c_2)) \wedge (F(c_2, c_2) \implies F(c_1, c_1)) +$$ +
+{{}} + +Consider the model $\\{ F(c_1, c_1), \neg F(c_1, c_2), \neg F(c_2, c_1), \neg F(c_2, c_2) \\}$. This causes the left hand side of the conjunction to fail. Hence the formula is invalid and we have found a counterexample.