mirror of
				https://github.com/Brandon-Rozek/website.git
				synced 2025-10-31 05:41:13 +00:00 
			
		
		
		
	Added other proofs
This commit is contained in:
		
							parent
							
								
									270ddc8da0
								
							
						
					
					
						commit
						a92ed52f8f
					
				
					 1 changed files with 21 additions and 2 deletions
				
			
		|  | @ -37,11 +37,20 @@ $$ | ||||||
| \begin{align*} | \begin{align*} | ||||||
| (\forall x \phi) \implies \psi &\iff \neg (\forall x \phi) \vee \psi \tag{0.1} \\\\ | (\forall x \phi) \implies \psi &\iff \neg (\forall x \phi) \vee \psi \tag{0.1} \\\\ | ||||||
| &\iff (\exists x \neg \phi) \vee \psi \tag{2.2}\\\\ | &\iff (\exists x \neg \phi) \vee \psi \tag{2.2}\\\\ | ||||||
| &\iff \exists x (\neg \phi \vee \psi) \tag{2.1}\\\\ | &\iff \exists x (\neg \phi \vee \psi) \tag{1.2}\\\\ | ||||||
| &\iff \exists x (\phi \implies \psi) \tag{0.1} | &\iff \exists x (\phi \implies \psi) \tag{0.1} | ||||||
| \end{align*} | \end{align*} | ||||||
| $$ | $$ | ||||||
| **2.** Show that $\phi \implies (\exists x \psi)$ is equivalent to $\exists x (\phi \implies \psi)$ | **2.** Show that $(\exists x \phi) \implies \psi$ is equivalent to $\forall x (\phi \implies \psi)$ | ||||||
|  | $$ | ||||||
|  | \begin{align*} | ||||||
|  | (\exists x \phi) \implies \psi &\iff \neg(\exists x \phi) \vee \psi \tag{0.1}\\\\ | ||||||
|  | &\iff \forall x (\neg \phi) \vee \psi \tag{2.1}\\\\ | ||||||
|  | &\iff \forall x (\neg \phi \vee \psi) \tag{1.1}\\\\ | ||||||
|  | &\iff \forall x (\phi \implies \psi) \tag{0.1} | ||||||
|  | \end{align*} | ||||||
|  | $$ | ||||||
|  | **3.** Show that $\phi \implies (\exists x \psi)$ is equivalent to $\exists x (\phi \implies \psi)$ | ||||||
| $$ | $$ | ||||||
| \begin{align*} | \begin{align*} | ||||||
| \phi \implies (\exists x \psi) &\iff \neg \phi \vee (\exists x \psi) \tag{0.1}\\\\ | \phi \implies (\exists x \psi) &\iff \neg \phi \vee (\exists x \psi) \tag{0.1}\\\\ | ||||||
|  | @ -51,3 +60,13 @@ $$ | ||||||
| &\iff \exists x (\phi \implies \psi) \tag{0.1} | &\iff \exists x (\phi \implies \psi) \tag{0.1} | ||||||
| \end{align*} | \end{align*} | ||||||
| $$ | $$ | ||||||
|  | **4.** Show that $\phi \implies (\forall x \psi)$ is equivalent to $\forall x (\phi \implies \psi)$ | ||||||
|  | $$ | ||||||
|  | \begin{align*} | ||||||
|  | \phi \implies (\forall x \psi) &\iff \neg \phi \vee (\forall x \psi) \tag{0.1}\\\\ | ||||||
|  | &\iff \forall x(\psi) \vee \neg \phi \tag{symmetry} \\\\ | ||||||
|  | &\iff \forall x (\psi \vee \neg \phi) \tag{1.1}\\\\  | ||||||
|  | &\iff \forall x (\neg \phi \vee \psi) \tag{symmetry} \\\\ | ||||||
|  | &\iff \forall x (\phi \implies \psi) \tag{0.1} | ||||||
|  | \end{align*} | ||||||
|  | $$ | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue