mirror of
https://github.com/Brandon-Rozek/website.git
synced 2024-11-24 17:16:30 -05:00
New Post
This commit is contained in:
parent
7e3e31f58b
commit
7c31a3a212
1 changed files with 118 additions and 0 deletions
118
content/blog/deep-recursion.md
Normal file
118
content/blog/deep-recursion.md
Normal file
|
@ -0,0 +1,118 @@
|
||||||
|
---
|
||||||
|
title: "Deep Recursion"
|
||||||
|
date: 2022-11-11T14:45:17-05:00
|
||||||
|
draft: false
|
||||||
|
tags: ["Scala"]
|
||||||
|
math: false
|
||||||
|
---
|
||||||
|
|
||||||
|
In functional programming, we often look at a list in terms of its head (first-element) and tail (rest-of-list). This allows us to define operations on a list recursively. For example, how do we sum a list of integers such as `[1, 2, 3, 4]`?
|
||||||
|
|
||||||
|
```scala
|
||||||
|
def sum(l : List[Int]): Int =
|
||||||
|
if l.size == 0 then
|
||||||
|
0
|
||||||
|
else if l.size == 1 then
|
||||||
|
l.head
|
||||||
|
else
|
||||||
|
l.head + sum(l.tail)
|
||||||
|
```
|
||||||
|
|
||||||
|
We later learn that the `fold` version is more compact.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
l.foldLeft(0)(_ + _)
|
||||||
|
```
|
||||||
|
|
||||||
|
The big question though, is how do we write this function if we allow lists to be arbitrarily nested? One example of this is the list `[[1, 2, [3, 4]], 5, [[6, 7], 8]]`
|
||||||
|
|
||||||
|
## Deep Recursion
|
||||||
|
|
||||||
|
To accomplish this, we need to make use of *deep recursion*. At its essence, we change the previous program so that it also recurses on the head of the list as well since that may be a list.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
def deep_sum(l: Int | Matchable): Int =
|
||||||
|
if l.isInstanceOf[Int] then
|
||||||
|
l.asInstanceOf[Int]
|
||||||
|
else
|
||||||
|
val ll = l.asInstanceOf[List[Int | Matchable]]
|
||||||
|
if ll.size == 0 then
|
||||||
|
0
|
||||||
|
else if ll.size == 1 then
|
||||||
|
deep_sum(ll.head)
|
||||||
|
else
|
||||||
|
deep_sum(ll.head) + deep_sum(ll.tail)
|
||||||
|
```
|
||||||
|
|
||||||
|
Lets trace through an example `[[1], 2]`
|
||||||
|
|
||||||
|
```
|
||||||
|
deep_sum([[1], 2])
|
||||||
|
deep_sum([1]) + deep_sum([2])
|
||||||
|
deep_sum(1) + deep_sum([2])
|
||||||
|
1 + deep_sum([2])
|
||||||
|
1 + deep_sum(2)
|
||||||
|
1 + 2
|
||||||
|
3
|
||||||
|
```
|
||||||
|
|
||||||
|
## Deep Recursion via Fold
|
||||||
|
|
||||||
|
Similar to shallow recursion, we can use the `foldLeft` function to help clean up the code a little:
|
||||||
|
|
||||||
|
```scala
|
||||||
|
def deep_sum(l : Int | Matchable): Int =
|
||||||
|
if l.isInstanceOf[Int] then
|
||||||
|
l.asInstanceOf[Int]
|
||||||
|
else
|
||||||
|
val ll = l.asInstanceOf[List[Int | Matchable]]
|
||||||
|
ll.foldLeft(0)((c, n) => c + deep_sum(n))
|
||||||
|
```
|
||||||
|
|
||||||
|
In the above fold, `c` contains the current partial result (of type `Int`) which we can then add the recursive result of the next element of the list.
|
||||||
|
|
||||||
|
Let's trace through an example `[[1], 2]`
|
||||||
|
|
||||||
|
```
|
||||||
|
deep_sum([[1], 2])
|
||||||
|
[[1], 2].foldLeft(0)((c, n) => c + deep_sum(n))
|
||||||
|
(0 + deep_sum([1])) + deep_sum(2)
|
||||||
|
(0 + [1].foldLeft(0)((c1, n1) => c1 + deep_sum(n1))) + deep_sum(2)
|
||||||
|
(0 + (0 + deep_sum(1))) + deep_sum(2)
|
||||||
|
(0 + (0 + 1)) + deep_sum(2)
|
||||||
|
(0 + 1) + deep_sum(2)
|
||||||
|
1 + deep_sum(2)
|
||||||
|
1 + 2
|
||||||
|
3
|
||||||
|
```
|
||||||
|
|
||||||
|
## Deep Recursion via Fold/Map
|
||||||
|
|
||||||
|
In the prior example, the deep recursion and the reduction logic were combined within the same anonymous function. We can separate this out by making use of `map`.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
def deep_sum(l: Int | Matchable): Int =
|
||||||
|
if l.isInstanceOf[Int] then
|
||||||
|
l.asInstanceOf[Int]
|
||||||
|
else
|
||||||
|
val ll = l.asInstanceOf[List[Int | Matchable]]
|
||||||
|
l.map(deep_sum).foldLeft(_ + _)
|
||||||
|
```
|
||||||
|
|
||||||
|
Intuitively, the map will apply `deep_sum` to each element of the list and returns an `Int` for each element as that's the return type of `deep_sum`. Once we have our list of integers, we can perform the fold to reduce it to a single sum.
|
||||||
|
|
||||||
|
Lets trace through an example `[[1], 2]`
|
||||||
|
|
||||||
|
```
|
||||||
|
deep_sum([[1], 2])
|
||||||
|
[deep_sum([1]), deep_sum(2)].foldLeft(0)(_ + _)
|
||||||
|
[[deep_sum(1)].foldLeft(0)(_ + _), deep_sum(2)].foldLeft(0)(_ + _)
|
||||||
|
[[1].foldLeft(0)(_ + _), deep_sum(2)].foldLeft(0)(_ + _)
|
||||||
|
[(0 + 1), deep_sum(2)].foldLeft(0)(_ + _)
|
||||||
|
[1, deep_sum(2)].foldLeft(0)(_ + _)
|
||||||
|
[1, 2].foldLeft(0)(_ + _)
|
||||||
|
(0 + 1) + 2
|
||||||
|
1 + 2
|
||||||
|
3
|
||||||
|
```
|
||||||
|
|
Loading…
Reference in a new issue