mirror of
https://github.com/Brandon-Rozek/website.git
synced 2024-11-25 01:26:30 -05:00
New Post
This commit is contained in:
parent
7c31a3a212
commit
43f257d090
1 changed files with 183 additions and 0 deletions
183
content/blog/corecursion-unfold-infinite-sequences.md
Normal file
183
content/blog/corecursion-unfold-infinite-sequences.md
Normal file
|
@ -0,0 +1,183 @@
|
||||||
|
---
|
||||||
|
title: "Corecursion, Unfold and Infinite Sequences"
|
||||||
|
date: 2022-11-12T10:45:04-05:00
|
||||||
|
draft: false
|
||||||
|
tags: ["Scala", "Functional Programming"]
|
||||||
|
math: true
|
||||||
|
---
|
||||||
|
|
||||||
|
Recursion takes a large problem and breaks it down until it reaches some base cases. One popular example, is the factorial function.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
def fact(x: Int): Int =
|
||||||
|
if x == 0 then
|
||||||
|
1
|
||||||
|
else if x == 1 then
|
||||||
|
1
|
||||||
|
else
|
||||||
|
x * fact(x - 1)
|
||||||
|
```
|
||||||
|
|
||||||
|
Though we can similarly arrive at the answer by starting at the base case `1` and multiplying until we reach `x`. This is called co-recursion.
|
||||||
|
|
||||||
|
```
|
||||||
|
1 * 2 * ... * x
|
||||||
|
```
|
||||||
|
|
||||||
|
`Unfold` allows us to create sequences given some initial state and a function that takes some state and produces a value for the sequence. For the factorial function, we want to keep track of in our state the last factorial computed and the current index. `(lastFact, currInd)`.
|
||||||
|
|
||||||
|
Therefore, our initial state is `(1, 0)`.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val fact_seq = () => Iterator.unfold((1, 0))((x, y) => Some(
|
||||||
|
x, // currFact
|
||||||
|
(x * (y + 1), y + 1) // (nextFact, nextInd)
|
||||||
|
))
|
||||||
|
|
||||||
|
val fact = (x: Int) => fact_seq().take(x + 1).toList.last
|
||||||
|
```
|
||||||
|
|
||||||
|
Let's trace an execution of `fact(4)`.
|
||||||
|
|
||||||
|
```
|
||||||
|
fact(4)
|
||||||
|
Iterator.unfold((1, 0))((x, y) => Some((x, (x * (y + 1), y + 1)))).take(5).toList.last
|
||||||
|
States: (1, 0) -> (1, 1) -> (2, 2) -> (6, 3) -> (24, 4).....
|
||||||
|
[1, 1, 2, 6, 24, ...].take(4).toList.last
|
||||||
|
[1, 1, 2, 6, 24].last
|
||||||
|
24
|
||||||
|
```
|
||||||
|
|
||||||
|
Now why is this useful when maybe the recursive version can seem cleaner? Co-recursion and in turn unfolding can help remove redundancies. Let's look at the Fibbonaci sequence for an example. The recursive version would be as follows:
|
||||||
|
|
||||||
|
```scala
|
||||||
|
def fib(n : Int): Int =
|
||||||
|
if n == 0 then
|
||||||
|
0
|
||||||
|
else if n == 1 then
|
||||||
|
1
|
||||||
|
else
|
||||||
|
fib(n - 1) + fib(n - 2)
|
||||||
|
```
|
||||||
|
|
||||||
|
Now let's trace through an execution of `fib(4)`
|
||||||
|
|
||||||
|
```
|
||||||
|
fib(4)
|
||||||
|
fib(3) + fib(2)
|
||||||
|
(fib(2) + fib(1)) + fib(2)
|
||||||
|
((fib(1) + fib(0)) + fib(1)) + fib(2)
|
||||||
|
((1 + fib(0)) + fib(1)) + fib(2)
|
||||||
|
((1 + 0) + fib(1)) + fib(2)
|
||||||
|
(1 + fib(1)) + fib(2)
|
||||||
|
(1 + 1) + fib(2)
|
||||||
|
2 + fib(2)
|
||||||
|
2 + (fib(1) + fib(0))
|
||||||
|
2 + (1 + fib(0))
|
||||||
|
2 + (1 + 0)
|
||||||
|
2 + 1
|
||||||
|
3
|
||||||
|
```
|
||||||
|
|
||||||
|
Notice how there are many redundant calculations, for example `fib(2)` is evaluated twice separately in line 3 above.
|
||||||
|
|
||||||
|
Now lets look at how `unfold` helps. For our state, we need to keep track of the last two evaluations. Therefore, we can represent our state as `(currentAnswer, nextAnswer)`.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val fib_seq = () => Iterator.unfold((0, 1))((x, y) => Some(x, (y, x + y)))
|
||||||
|
val fib: (Int => Int) = (n) => fib_seq.take(n + 1).toList.last
|
||||||
|
```
|
||||||
|
|
||||||
|
Tracing through `fib(4)`
|
||||||
|
|
||||||
|
```
|
||||||
|
fib(4)
|
||||||
|
Iterator.unfold((0, 1))((x, y) => Some(x,(y, x + y))).take(5).toList.last
|
||||||
|
State: (0, 1) -> (1, 1) -> (1, 2) -> (2, 3) -> (3, 5)
|
||||||
|
[0, 1, 1, 2, 3, ...].take(5).toList.last
|
||||||
|
[0, 1, 1, 2, 3].last
|
||||||
|
3
|
||||||
|
```
|
||||||
|
|
||||||
|
## Small Unfold Examples
|
||||||
|
|
||||||
|
To get a better handle of `unfold`. Here are three examples:
|
||||||
|
|
||||||
|
**(1) Build an iterator from start to infinity with a step size of `step`**
|
||||||
|
|
||||||
|
Built-in way in Scala:
|
||||||
|
|
||||||
|
```scala
|
||||||
|
Iterator.from(start, step)
|
||||||
|
```
|
||||||
|
|
||||||
|
Using `unfold`
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val fromStep: ((Int, Int) => Iterator[Int]) = (n, step) => Iterator.unfold(n)(x => Some((x, x + step)))
|
||||||
|
```
|
||||||
|
|
||||||
|
**(2) Build an infinite sequence of even numbers**
|
||||||
|
|
||||||
|
Using from and map:
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val evens = Iterator.from(0).filter(_ % 2 == 0)
|
||||||
|
```
|
||||||
|
|
||||||
|
Using `fromStep` in (1)
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val evens = fromStep(0, 2)
|
||||||
|
```
|
||||||
|
|
||||||
|
Using `unfold`
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val evens = Iterator.unfold(0)(x => Some((x, x + 2)))
|
||||||
|
```
|
||||||
|
|
||||||
|
**(3) Build a countdown from $n$ to $0$**
|
||||||
|
|
||||||
|
Notice how the function within `unfold` needs to return an `Option`. If the returned option is `None` then the sequence is terminated.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val countdown = (n: Int) => Iterator.unfold(n)(x => if x == -1 then None else Some((x, x - 1)))
|
||||||
|
```
|
||||||
|
|
||||||
|
## Recursive Sequences
|
||||||
|
|
||||||
|
In the past, [I've written](/blog/haskellrealsequences/) about analyzing sequences from real analysis within Haskell. Within it, I was looking at the following sequence:
|
||||||
|
$$
|
||||||
|
f(1) = 1, f(2) = 2, f(n) = \frac{1}{2}(f(n - 2) + f(n - 1))
|
||||||
|
$$
|
||||||
|
The technique I described in that post is to build out the function `f` and then map it to the natural numbers. In Scala that would look like:
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val f: (Int => Double) = n => if n == 1 then 1.0 else if n == 2 then 2.0 else 0.5 * (f(n - 2) + f(n - 1))
|
||||||
|
val f_sequence = Iterator.from(1).map(f)
|
||||||
|
```
|
||||||
|
|
||||||
|
However as mentioned in prior in this post, this methodology is suboptimal since there will be many repeated computations.
|
||||||
|
|
||||||
|
Corecursion and unfold comes to the rescue again. For recursive sequences, we can make the state the base cases `(1.0, 2.0)`.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
val f_sequence = () => Iterator.unfold((1.0, 2.0))((x1, x2) => Some(
|
||||||
|
x1,
|
||||||
|
(x2, 0.5 * (x1 + x2))
|
||||||
|
))
|
||||||
|
```
|
||||||
|
|
||||||
|
We can get a good guess at where this sequence converges by looking at the $100^{th}$ element.
|
||||||
|
|
||||||
|
```scala
|
||||||
|
f_sequence().take(100).toList.last
|
||||||
|
// 1.6666666666666665
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want to learn more about unfold or see a different take, then the following two blog posts helped me craft this one:
|
||||||
|
|
||||||
|
https://blog.genuine.com/2020/07/scala-unfold/
|
||||||
|
|
||||||
|
https://john.cs.olemiss.edu/~hcc/csci555/notes/FPS05/Laziness.html
|
Loading…
Reference in a new issue