mirror of
https://github.com/Brandon-Rozek/website.git
synced 2024-12-22 23:32:27 +00:00
New Posts
This commit is contained in:
parent
dedb49767b
commit
274071368c
2 changed files with 92 additions and 0 deletions
47
content/blog/human-readable-sizes.md
Normal file
47
content/blog/human-readable-sizes.md
Normal file
|
@ -0,0 +1,47 @@
|
|||
---
|
||||
title: "Human Readable Sizes"
|
||||
date: 2021-03-15T19:11:35-04:00
|
||||
draft: false
|
||||
tags: []
|
||||
---
|
||||
|
||||
When playing with large and small values, it is useful to convert them to a different unit in scientific notation. Let's look at bytes.
|
||||
|
||||
```python
|
||||
size_categories = ["B", "KB", "MB", "GB", "TB"]
|
||||
```
|
||||
|
||||
You can figure out how to best represent it by seeing how many of the base (in this case 1000) fits into the value.
|
||||
$$
|
||||
category = \lfloor \frac{\log{(size_{bytes})}}{\log{(base)}} \rfloor
|
||||
$$
|
||||
You'll want to make sure that you don't overflow in the number of categories you have
|
||||
|
||||
```python
|
||||
category_num = min(category_num, len(size_categories))
|
||||
```
|
||||
|
||||
You can then get its category representation by
|
||||
$$
|
||||
size = \frac{size_{bytes}}{(2^{category})}
|
||||
$$
|
||||
We can wrap this all up info a nice python function
|
||||
|
||||
```python
|
||||
def humanReadableBytes(num_bytes: int) -> str:
|
||||
base = 1000
|
||||
|
||||
# Zero Case
|
||||
if num_bytes == 0:
|
||||
return "0"
|
||||
|
||||
size_categories = ["B", "KB", "MB", "GB", "TB"]
|
||||
category_num = int(math.log(num_bytes) / math.log(base))
|
||||
|
||||
# Make sure it doesn't overflow
|
||||
category_num = min(category_num, len(size_categories) - 1)
|
||||
|
||||
return "{:.2f} ".format(num_bytes / (base ** category_num)) + \
|
||||
size_categories[category_num]
|
||||
```
|
||||
|
45
content/blog/z3constraintsolving.md
Normal file
45
content/blog/z3constraintsolving.md
Normal file
|
@ -0,0 +1,45 @@
|
|||
---
|
||||
title: "Z3 Constraint solving"
|
||||
date: 2021-06-18T00:53:20-04:00
|
||||
draft: false
|
||||
tags: []
|
||||
---
|
||||
|
||||
I've been looking for an easy to use constraint solver for a while and recently I've landed on using the python bindings for the SMT solver Z3.
|
||||
|
||||
To install:
|
||||
|
||||
```bash
|
||||
pip install z3-solver
|
||||
```
|
||||
|
||||
Let's say you want to find non-negative solutions for the following Diophantine equation:
|
||||
$$
|
||||
9x - 100y = 1
|
||||
$$
|
||||
To do that, we import Z3, declare our integer variables, and pass it into a solve function:
|
||||
|
||||
```python
|
||||
from z3 import *
|
||||
x, y = Ints("x y")
|
||||
solve(9 * x - 100 * y == 1, x >= 0, y >= 0)
|
||||
```
|
||||
|
||||
This will print out: `[y = 8, x = 89]`
|
||||
|
||||
If you want to use these values for later computations, you'll have to setup a Z3 model:
|
||||
|
||||
```python
|
||||
from z3 import *
|
||||
x, y = Ints("x y")
|
||||
s = Solver
|
||||
s.add(9 * x - 100 * y == 1)
|
||||
s.add(x >= 0)
|
||||
s.add(y >= 0)
|
||||
|
||||
s.check()
|
||||
m = s.model()
|
||||
x_val = m.eval(x)
|
||||
y_val = m.eval(y)
|
||||
```
|
||||
|
Loading…
Reference in a new issue