diff --git a/content/blog/implications-prenex-normal-form.md b/content/blog/implications-prenex-normal-form.md index a8990b6..6552340 100644 --- a/content/blog/implications-prenex-normal-form.md +++ b/content/blog/implications-prenex-normal-form.md @@ -38,7 +38,7 @@ $$ (\forall x \phi) \implies \psi &\iff \neg (\forall x \phi) \vee \psi \tag{0.1} \\\\ &\iff (\exists x \neg \phi) \vee \psi \tag{2.2}\\\\ &\iff \exists x (\neg \phi \vee \psi) \tag{2.1}\\\\ -&\iff \exists x (\neg \phi \implies \psi) \tag{0.1} +&\iff \exists x (\phi \implies \psi) \tag{0.1} \end{align*} $$ **2.** Show that $\phi \implies (\exists x \psi)$ is equivalent to $\exists x (\phi \implies \psi)$