mirror of
https://github.com/Brandon-Rozek/website.git
synced 2024-11-21 07:46:30 -05:00
New post
This commit is contained in:
parent
f0aa998ca6
commit
22ec1c8914
1 changed files with 52 additions and 0 deletions
52
content/blog/implications-prefix-normal-form.md
Normal file
52
content/blog/implications-prefix-normal-form.md
Normal file
|
@ -0,0 +1,52 @@
|
|||
---
|
||||
title: "Prefix Normal Form - Implication Exercise"
|
||||
date: 2023-02-17T11:05:35-05:00
|
||||
draft: false
|
||||
tags: []
|
||||
math: true
|
||||
medium_enabled: false
|
||||
---
|
||||
|
||||
I recently read through the Wikipedia article on [Prefix Normal Form](https://en.wikipedia.org/wiki/Prenex_normal_form). It first describes the two equivalences for conjunction/disjunction.
|
||||
$$
|
||||
(\forall x \phi) \vee \psi \iff \forall x(\phi \vee \psi) \tag{1.1}
|
||||
$$
|
||||
|
||||
$$
|
||||
(\exists x \phi) \vee \psi \iff \exists x (\phi \vee \psi) \tag{1.2}
|
||||
$$
|
||||
|
||||
They show these rules similarly for conjunction. In the next section, they describe the rules for negation:
|
||||
$$
|
||||
\neg \exists x \phi \iff \forall x \neg \phi \tag{2.1}
|
||||
$$
|
||||
|
||||
$$
|
||||
\neg \forall x \phi \iff \exists x \neg \phi \tag{2.2}
|
||||
$$
|
||||
|
||||
In the third section, they describe the rules related to implication. With it comes the following quote:
|
||||
|
||||
> These rules can be derived by [rewriting](https://en.wikipedia.org/wiki/Rewriting#Logic) the implication $\phi \implies \psi$ as $\neg \phi \vee \psi$ and applying the rules for disjunction above.
|
||||
|
||||
This sounds like "we leave this as an exercise to the reader", and a reader I am! Let's label the rule in the quote as $0.1$.
|
||||
|
||||
**1.** Show that $(\forall x \phi) \implies \psi$ is equivalent to $\exists x (\phi \implies \psi)$
|
||||
$$
|
||||
\begin{align*}
|
||||
(\forall x \phi) \implies \psi &\iff \neg (\forall x \phi) \vee \psi \tag{0.1} \\\\
|
||||
&\iff (\exists x \neg \phi) \vee \psi \tag{2.2}\\\\
|
||||
&\iff \exists x (\neg \phi \vee \psi) \tag{2.1}\\\\
|
||||
&\iff \exists x (\neg \phi \implies \psi) \tag{0.1}
|
||||
\end{align*}
|
||||
$$
|
||||
**2.** Show that $\phi \implies (\exists x \psi)$ is equivalent to $\exists x (\phi \implies \psi)$
|
||||
$$
|
||||
\begin{align*}
|
||||
\phi \implies (\exists x \psi) &\iff \neg \phi \vee (\exists x \psi) \tag{0.1}\\\\
|
||||
&\iff (\exists x \psi) \vee \neg \phi \tag{symmetry}\\\\
|
||||
&\iff \exists x (\psi \vee \neg \phi) \tag{1.2}\\\\
|
||||
&\iff \exists x (\neg \phi \vee \psi) \tag{symmetry}\\\\
|
||||
&\iff \exists x (\phi \implies \psi) \tag{0.1}
|
||||
\end{align*}
|
||||
$$
|
Loading…
Reference in a new issue