mirror of
https://github.com/Brandon-Rozek/website.git
synced 2024-11-28 21:16:47 -05:00
209 lines
6.3 KiB
Markdown
209 lines
6.3 KiB
Markdown
|
---
|
||
|
title: "Davis Putnam Satisfiability Algorithm"
|
||
|
math: false
|
||
|
---
|
||
|
|
||
|
The Davis Putnam (DP) algorithm is the first resolution based algorithm
|
||
|
created in 1960 that checks whether or not a given formula is satisfiable.
|
||
|
That is, there exists an assignment of propositions that can make the formula true.
|
||
|
|
||
|
They later made a refinement of this algorithm in 1962 called the "Davis Putnam Logemann
|
||
|
Loveland" (DPLL). In fact, the refinement is so widely used that it is difficult to find a clear
|
||
|
document describing the earlier edition.
|
||
|
This page will attempt to describe the origial DP algorithm. To obtain the DPLL algorithm replace the
|
||
|
resolution rule with the splitting rule.
|
||
|
|
||
|
|
||
|
The core idea of the algorithm is to transform the formula to a simpler but equisatisfiable one.
|
||
|
This algorithm takes a list of clauses, which is considered to be in CNF.
|
||
|
For example for the following list of clauses: `[[a, b, c], [d, e]]`
|
||
|
we get the following formula `(a + b + c)(d + e)`
|
||
|
|
||
|
The algorithm has three rules associated with it:
|
||
|
- [Unit Propagation](#unit-propagation)
|
||
|
- [Affirmative-Negative](#affirmative-negative)
|
||
|
- [DP Resolution](#dp-resolution)
|
||
|
- [Conclusion](#conclusion)
|
||
|
|
||
|
## Unit Propagation
|
||
|
|
||
|
If there is a clause that only contains one literal `p` then:
|
||
|
|
||
|
1. Remove clauses containing `p`
|
||
|
2. Remove all instances of `Not(p)`
|
||
|
|
||
|
```python
|
||
|
def _unit_propagation(x: List[Clause]) -> List[Clause]:
|
||
|
"""
|
||
|
Applies unit propagation.
|
||
|
|
||
|
If there is a clause with one literal p then
|
||
|
(1) Remove clauses containing p
|
||
|
(2) Remove all instances of Not(p)
|
||
|
"""
|
||
|
# Find all unit clauses
|
||
|
single_literals = (c[0] for c in x if len(c) == 1)
|
||
|
|
||
|
# Only focus on one this rule application as
|
||
|
# [[p], [Not(p)]] is an edge case
|
||
|
single_literal = next(single_literals, None)
|
||
|
|
||
|
# If there are no unit clauses, move onto the next rule.
|
||
|
if single_literal is None:
|
||
|
return x
|
||
|
|
||
|
# (1) Remove clauses containing the unit clause
|
||
|
new_x = [c for c in x if all((l != single_literal for l in c))]
|
||
|
|
||
|
# (2) Remove all instances of Not(p)
|
||
|
negated_single_literal = negate(single_literal)
|
||
|
new_x = [[l for l in c if l != negated_single_literal] for c in new_x]
|
||
|
|
||
|
return new_x
|
||
|
```
|
||
|
|
||
|
|
||
|
|
||
|
## Affirmative-Negative
|
||
|
|
||
|
Remove clauses that contains literals that only occur positively in the list of clauses or negatively.
|
||
|
|
||
|
```python
|
||
|
def _affirmative_negative(x: List[Clause]) -> List[Clause]:
|
||
|
"""
|
||
|
Remove clauses containing a literal
|
||
|
that only occurs positively or negatively
|
||
|
"""
|
||
|
literal_counts = _literal_counts(x)
|
||
|
positive_literals, negative_literals = _pos_neg_lits(literal_counts)
|
||
|
|
||
|
# Collect literals that are strictly positive or negative
|
||
|
# but not both
|
||
|
strict_literals = positive_literals ^ negative_literals
|
||
|
|
||
|
# Only consider one strict literal
|
||
|
strict_literal = next(iter(strict_literals), None)
|
||
|
|
||
|
# If there are no strict literals,
|
||
|
# move on to the next rule
|
||
|
if strict_literal is None:
|
||
|
return x
|
||
|
|
||
|
# Remove clauses that contain the strict literal
|
||
|
return [c for c in x
|
||
|
if all(
|
||
|
(l != strict_literal and negate(l) != strict_literal
|
||
|
for l in c)
|
||
|
)]
|
||
|
|
||
|
```
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
## DP Resolution
|
||
|
|
||
|
- Find a literal `p` that occurs both positively and negatively in the list of clauses.
|
||
|
- As a heuristic, choosing a `p` that is the least common to minimize the state size.
|
||
|
- Create a list `C` containing clauses where `p` occurs positively; removing `p` from each clause.
|
||
|
- Create a list `D` containing clauses where `p` occurs negatively; removing `Not(p)` from each clause.
|
||
|
- Create a list `X` that contains clauses that do not contain `p` or `Not(p)` in them.
|
||
|
- Return `X + C + D` as the new list of clauses.
|
||
|
|
||
|
```python
|
||
|
def _dp_resolution(x: List[Clause]) -> List[Clause]:
|
||
|
"""
|
||
|
Take a literal that occurs positvely and negatively
|
||
|
and combine clauses that occur positively and
|
||
|
negatively with p.
|
||
|
"""
|
||
|
# Find literals that occur both positively and negatively
|
||
|
literal_counts = _literal_counts(x)
|
||
|
positive_literals, negative_literals = _pos_neg_lits(literal_counts)
|
||
|
polar_literals = positive_literals & negative_literals
|
||
|
|
||
|
# If there are no such literals, then move
|
||
|
# onto the next rule.
|
||
|
if len(polar_literals) == 0:
|
||
|
return x
|
||
|
|
||
|
# Count the number of occurances of each of the polar
|
||
|
# literals and choose the least common literal p as
|
||
|
# a heuristic.
|
||
|
polar_literal_counts = dict(filter(lambda y: y[0] in polar_literals, literal_counts.items()))
|
||
|
p, _ = min(polar_literal_counts.items(), key=itemgetter(1))
|
||
|
|
||
|
# Create a list C containing clauses where p occurs
|
||
|
# positively; removing p from the clause
|
||
|
C = [[l for l in c if l != p] for c in x if p in c]
|
||
|
|
||
|
# Create a list D containing clauses where p occurs
|
||
|
# negatively; removing Not(p) from the clause
|
||
|
D = [[l for l in c if l != negate(p)] for c in x if negate(p) in c]
|
||
|
|
||
|
# Combine C and D
|
||
|
new_x: List[Clause] = []
|
||
|
for ci in C:
|
||
|
for di in D:
|
||
|
# Or(ci, di) removing duplicate literals
|
||
|
cdi = list(set(ci + di))
|
||
|
# No point in adding a clause that already exists.
|
||
|
if cdi not in new_x:
|
||
|
new_x.append(cdi)
|
||
|
|
||
|
# Clauses that don't contain p or not p in it
|
||
|
x0 = [c for c in x if p not in c and negate(p) not in c]
|
||
|
|
||
|
return new_x + x0
|
||
|
```
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
## Conclusion
|
||
|
|
||
|
The complete DP algorithm is a recursive one with two base cases:
|
||
|
- If the length of the list of clauses is zero, then it is satisfiable
|
||
|
- If `[]` is in the list of clauses, then it is not satisfiable.
|
||
|
|
||
|
Then it applies the first rule that matches out of the three:
|
||
|
- [Unit Propagation](#unit-propagation)
|
||
|
- [Affirmative-Negative](#affirmative-negative)
|
||
|
- [DP Resolution](#dp-resolution)
|
||
|
|
||
|
|
||
|
```python
|
||
|
def davis_putnam(x: List[Clause]) -> bool:s
|
||
|
"""
|
||
|
Davis-Putnam procedure for deciding
|
||
|
satisfiability from CNF clauses.
|
||
|
|
||
|
This is called recursively and it applies
|
||
|
the first rule that matches: Unit Propagation,
|
||
|
Affirmative-Negative, Resolution.
|
||
|
"""
|
||
|
# Base Cases
|
||
|
if len(x) == 0:
|
||
|
return True
|
||
|
if [] in x:
|
||
|
return False
|
||
|
|
||
|
# (1) Unit Propagation
|
||
|
x_new = _unit_propagation(x)
|
||
|
if x_new != x:
|
||
|
return davis_putnam(x_new)
|
||
|
|
||
|
# (2) Affirmative-Negative
|
||
|
x_new = _affirmative_negative(x)
|
||
|
if x_new != x:
|
||
|
return davis_putnam(x_new)
|
||
|
|
||
|
# (3) DP Resolution
|
||
|
x_new = _dp_resolution(x)
|
||
|
return davis_putnam(x_new)
|
||
|
|
||
|
```
|
||
|
|