val a_node = BinNode("a", Some(b_node), Some(d_node))
```
For depth first search, an intuitive immutable implementation would be a recursive function.
```scala
// Using Preorder traversal
def DFS(node: BinNode): Iterator[BinNode] =
lazy val left_side = node.left.fold(Iterator.empty[BinNode])(DFS)
lazy val right_side = node.right.fold(Iterator.empty[BinNode])(DFS)
Iterator(node) ++ left_side ++ right_side
```
Let's evaluate this using our example above:
```scala
DFS(a_node).toList.map(_.label)
// List(a, b, c, d)
```
The recursive implementation inherently uses the system stack to keep track of the nodes. This means that the last element gets evaluated in each step. Otherwise called last-in-first-out (LIFO). Breadth first search, however, uses a queue based approach where the first one added to the data structure is the first one considered (FIFO).
To preserve immutability in our code, we can use `unfold`. Here our state is the queue of nodes.
```scala
def BFS(node: BinNode): Iterator[BinNode] =
Iterator.unfold(List(node))(q =>
if q.isEmpty then
None
else
val crnt_node = q.head
val next_q = q.tail ++ crnt_node.left ++ crnt_node.right
Some(crnt_node, next_q)
)
```
Evaluating on our example:
```scala
BFS(a_node).toList.map(_.label)
// List(a, b, d, c)
```
We can also use `unfold` for the depth first search approach as well. We can replace the list used with a stack.
```scala
import scala.collection.mutable.Stack
def DFS2(node: BinNode): Iterator[BinNode] =
Iterator.unfold(Stack(node))(s =>
if s.isEmpty then
None
else
val crnt_node = s.pop()
s.pushAll(crnt_node.right)
s.pushAll(crnt_node.left)
Some(crnt_node, s)
)
```
Using a stack introduces some mutability. We can use the immutable list data structure instead, as long as we satisfy the LIFO ordering.
```scala
def DFS3(node: BinNode): Iterator[BinNode] =
Iterator.unfold(List(node))(s =>
if s.isEmpty then
None
else
val crnt_node = s.last
val next_s = s.init ++ crnt_node.right ++ crnt_node.left