""" Check to see if the model has the variable sharing property. """ from itertools import product from typing import List, Optional, Set, Tuple from common import set_to_str from model import ( Model, model_closure, ModelFunction, ModelValue ) class VSP_Result: def __init__( self, has_vsp: bool, model_name: Optional[str] = None, subalgebra1: Optional[Set[ModelValue]] = None, subalgebra2: Optional[Set[ModelValue]] = None): self.has_vsp = has_vsp self.model_name = model_name self.subalgebra1 = subalgebra1 self.subalgebra2 = subalgebra2 def __str__(self): if not self.has_vsp: return f"Model {self.model_name} does not have the variable sharing property." return f"""Model {self.model_name} has the variable sharing property. Subalgebra 1: {set_to_str(self.subalgebra1)} Subalgebra 2: {set_to_str(self.subalgebra2)} """ def has_vsp(model: Model, impfunction: ModelFunction, negation_defined: bool) -> VSP_Result: """ Checks whether a model has the variable sharing property. """ # NOTE: No models with only one designated # value satisfies VSP if len(model.designated_values) == 1: return VSP_Result(False, model.name) assert model.ordering is not None, "Expected ordering table in model" top = model.ordering.top() bottom = model.ordering.bottom() # Compute I the set of tuples (x, y) where # x -> y does not take a designiated value I: List[Tuple[ModelValue, ModelValue]] = [] for (x, y) in product(model.carrier_set, model.carrier_set): if impfunction(x, y) not in model.designated_values: I.append((x, y)) # Find the subalgebras which falsify implication for xys in I: xi = xys[0] # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and xi == bottom: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and xi == top: continue yi = xys[1] # Discard (A, {⊤} ∪ B') subalgebras if top is not None and yi == top: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and yi == bottom: continue # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b if model.ordering.is_lt(xi, yi): continue # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined if negation_defined and model.ordering.is_lt(yi, xi): continue # Compute the left closure of the set containing xi under all the operations carrier_set_left: Set[ModelValue] = model_closure({xi,}, model.logical_operations, bottom) # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and bottom in carrier_set_left: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and top in carrier_set_left: continue # Compute the closure of all operations # with just the ys carrier_set_right: Set[ModelValue] = model_closure({yi,}, model.logical_operations, top) # Discard (A, {⊤} ∪ B') subalgebras if top is not None and top in carrier_set_right: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and bottom in carrier_set_right: continue # Discard subalgebras that intersect if not carrier_set_left.isdisjoint(carrier_set_right): continue # Check whether for all pairs in the subalgebra, # that implication is falsified. falsified = True for (x2, y2) in product(carrier_set_left, carrier_set_right): if impfunction(x2, y2) in model.designated_values: falsified = False break if falsified: return VSP_Result(True, model.name, carrier_set_left, carrier_set_right) return VSP_Result(False, model.name)