""" Check to see if the model has the variable sharing property. """ from itertools import product from typing import Dict, List, Optional, Set, Tuple from common import set_to_str from model import ( Model, model_closure, ModelFunction, ModelValue ) class VSP_Result: def __init__( self, has_vsp: bool, model_name: Optional[str] = None, subalgebra1: Optional[Set[ModelValue]] = None, subalgebra2: Optional[Set[ModelValue]] = None): self.has_vsp = has_vsp self.model_name = model_name self.subalgebra1 = subalgebra1 self.subalgebra2 = subalgebra2 def __str__(self): if not self.has_vsp: return f"Model {self.model_name} does not have the variable sharing property." return f"""Model {self.model_name} has the variable sharing property. Subalgebra 1: {set_to_str(self.subalgebra1)} Subalgebra 2: {set_to_str(self.subalgebra2)} """ def has_vsp(model: Model, impfunction: ModelFunction, negation_defined: bool) -> VSP_Result: """ Checks whether a model has the variable sharing property. """ # NOTE: No models with only one designated # value satisfies VSP if len(model.designated_values) == 1: return VSP_Result(False, model.name) assert model.ordering is not None, "Expected ordering table in model" top = model.ordering.top() bottom = model.ordering.bottom() # Cache of closures C: Dict[ModelValue, Set[ModelValue]] = {} for x in model.designated_values: # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and x == bottom: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and x == top: continue candidate_ys = [y for y in model.designated_values if impfunction(x, y) not in model.designated_values] if len(candidate_ys) == 0: continue carrier_set_left: Set[ModelValue] = model_closure(C.get(x, {x,}), model.logical_operations, bottom) C[x] = carrier_set_left # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and bottom in carrier_set_left: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and top in carrier_set_left: continue for y in candidate_ys: # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b if model.ordering.is_lt(x, y): continue # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined if negation_defined and model.ordering.is_lt(y, x): continue # Discard (A, {⊤} ∪ B') subalgebras if top is not None and y == top: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and y == bottom: continue carrier_set_right: Set[ModelValue] = model_closure(C.get(y, {y,}), model.logical_operations, top) C[y] = carrier_set_right # Discard (A, {⊤} ∪ B') subalgebras if top is not None and top in carrier_set_right: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and bottom in carrier_set_right: continue # Discard subalgebras that intersect if not carrier_set_left.isdisjoint(carrier_set_right): continue # Check whether for all pairs in the subalgebra, # that implication is falsified. falsified = True for (x2, y2) in product(carrier_set_left, carrier_set_right): if impfunction(x2, y2) in model.designated_values: falsified = False break if falsified: return VSP_Result(True, model.name, carrier_set_left, carrier_set_right) return VSP_Result(False, model.name)