""" Check to see if the model has the variable sharing property. """ from itertools import product from typing import List, Optional, Set, Tuple from common import set_to_str from logic import Logic, Implication from model import ( Model, model_closure, ModelFunction, ModelValue ) SMT_LOADED = True try: from z3 import And, Or, Implies, sat from smt import SMTModelEncoder, SMTLogicEncoder except ImportError: SMT_LOADED = False class VSP_Result: def __init__( self, has_vsp: bool, model_name: Optional[str] = None, subalgebra1: Optional[Set[ModelValue]] = None, subalgebra2: Optional[Set[ModelValue]] = None): self.has_vsp = has_vsp self.model_name = model_name self.subalgebra1 = subalgebra1 self.subalgebra2 = subalgebra2 def __str__(self): if not self.has_vsp: return f"Model {self.model_name} does not have the variable sharing property." return f"""Model {self.model_name} has the variable sharing property. Subalgebra 1: {set_to_str(self.subalgebra1)} Subalgebra 2: {set_to_str(self.subalgebra2)} """ def has_vsp_magical(model: Model, impfunction: ModelFunction, negation_defined: bool) -> VSP_Result: """ Checks whether a MaGIC model has the variable sharing property. """ # NOTE: No models with only one designated # value satisfies VSP if len(model.designated_values) == 1: return VSP_Result(False, model.name) assert model.ordering is not None, "Expected ordering table in model" top = model.ordering.top() bottom = model.ordering.bottom() # Compute I the set of tuples (x, y) where # x -> y does not take a designiated value I: List[Tuple[ModelValue, ModelValue]] = [] for (x, y) in product(model.designated_values, model.designated_values): if impfunction(x, y) not in model.designated_values: I.append((x, y)) # Find the subalgebras which falsify implication for xys in I: xi = xys[0] # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and xi == bottom: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and xi == top: continue yi = xys[1] # Discard (A, {⊤} ∪ B') subalgebras if top is not None and yi == top: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and yi == bottom: continue # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b if model.ordering.is_lt(xi, yi): continue # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined if negation_defined and model.ordering.is_lt(yi, xi): continue # Compute the left closure of the set containing xi under all the operations carrier_set_left: Set[ModelValue] = model_closure({xi,}, model.logical_operations, bottom) # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and bottom in carrier_set_left: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and top in carrier_set_left: continue # Compute the closure of all operations # with just the ys carrier_set_right: Set[ModelValue] = model_closure({yi,}, model.logical_operations, top) # Discard (A, {⊤} ∪ B') subalgebras if top is not None and top in carrier_set_right: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and bottom in carrier_set_right: continue # Discard subalgebras that intersect if not carrier_set_left.isdisjoint(carrier_set_right): continue # Check whether for all pairs in the subalgebra, # that implication is falsified. falsified = True for (x2, y2) in product(carrier_set_left, carrier_set_right): if impfunction(x2, y2) in model.designated_values: falsified = False break if falsified: return VSP_Result(True, model.name, carrier_set_left, carrier_set_right) return VSP_Result(False, model.name) def has_vsp_smt(model: Model, impfn: ModelFunction) -> VSP_Result: """ Checks whether a given model satisfies the variable sharing property via SMT """ if not SMT_LOADED: raise Exception("Z3 is not property installed, cannot check via SMT") encoder = SMTModelEncoder(model) # Create predicates for our two subalgebras IsInK1 = encoder.create_predicate("IsInK1", 1) IsInK2 = encoder.create_predicate("IsInK2", 1) # Enforce that our two subalgebras are non-empty encoder.solver.add(Or([IsInK1(x) for x in encoder.smt_carrier_set])) encoder.solver.add(Or([IsInK2(x) for x in encoder.smt_carrier_set])) # K1/K2 are closed under the operations for model_fn, smt_fn in encoder.model_function_map.items(): for xs in product(encoder.smt_carrier_set, repeat=model_fn.arity): encoder.solver.add( Implies( And([IsInK1(x) for x in xs]), IsInK1(smt_fn(*xs)) ) ) encoder.solver.add( Implies( And([IsInK2(x) for x in xs]), IsInK2(smt_fn(*xs)) ) ) # x -> y is non-designated smt_imp = encoder.model_function_map[impfn] for (x, y) in product(encoder.smt_carrier_set, encoder.smt_carrier_set): encoder.solver.add( Implies( And(IsInK1(x), IsInK2(y)), encoder.is_designated(smt_imp(x, y)) == False ) ) # Execute solver if encoder.solver.check() == sat: # Extract subalgebras smt_model = encoder.solver.model() K1_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK1(x))] K1 = {ModelValue(str(x)) for x in K1_smt} K2_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK2(x))] K2 = {ModelValue(str(x)) for x in K2_smt} return VSP_Result(True, model.name, K1, K2) else: return VSP_Result(False, model.name) def has_vsp(model: Model, impfunction: ModelFunction, negation_defined: bool) -> VSP_Result: if model.is_magical: return has_vsp_magical(model, impfunction, negation_defined) return has_vsp_smt(model) def logic_has_vsp(logic: Logic, size: int) -> Optional[Tuple[Model, VSP_Result]]: """ Checks whether a given logic satisfies the variable sharing property by looking for a many-valued matrix of a specific size. If the logic does witness the VSP, then this function will return the matrix model and the subalgebras that witness it. Otherwise, if no matrix model of that given size can be found, it will return None """ assert size > 0 encoder = SMTLogicEncoder(logic, size) ## The following adds constraints which satisfy the VSP # Membership Predicates for K1/K2 IsInK1 = encoder.create_predicate("IsInK1", 1) IsInK2 = encoder.create_predicate("IsInK2", 1) # K1 and K2 are non-empty encoder.solver.add(Or([IsInK1(x) for x in encoder.smt_carrier_set])) encoder.solver.add(Or([IsInK2(x) for x in encoder.smt_carrier_set])) # K1/K2 are closed under the operations for op, SmtOp in encoder.operation_function_map.items(): for xs in product(encoder.smt_carrier_set, repeat=op.arity): encoder.solver.add( Implies( And([IsInK1(x) for x in xs]), IsInK1(SmtOp(*xs)) ) ) encoder.solver.add( Implies( And([IsInK2(x) for x in xs]), IsInK2(SmtOp(*xs)) ) ) # x -> y is non-designated Impfn = encoder.operation_function_map[Implication] for (x, y) in product(encoder.smt_carrier_set, encoder.smt_carrier_set): encoder.solver.add( Implies( And(IsInK1(x), IsInK2(y)), encoder.is_designated(Impfn(x, y)) == False ) ) model = encoder.find_model() # We failed to find a VSP witness if model is None: return None # Otherwise, a matrix model and correspoding # subalgebras exist. smt_model = encoder.solver.model() K1_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK1(x))] K1 = {ModelValue(str(x)) for x in K1_smt} K2_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK2(x))] K2 = {ModelValue(str(x)) for x in K2_smt} return model, VSP_Result(True, model.name, K1, K2)