""" Check to see if the model has the variable sharing property. """ from itertools import product from typing import List, Optional, Set, Tuple from common import set_to_str from model import ( Model, model_closure, ModelFunction, ModelValue ) SMT_LOADED = True try: from z3 import And, Or, Implies, sat from smt import SMTModelEncoder except ImportError: SMT_LOADED = False class VSP_Result: def __init__( self, has_vsp: bool, model_name: Optional[str] = None, subalgebra1: Optional[Set[ModelValue]] = None, subalgebra2: Optional[Set[ModelValue]] = None): self.has_vsp = has_vsp self.model_name = model_name self.subalgebra1 = subalgebra1 self.subalgebra2 = subalgebra2 def __str__(self): if not self.has_vsp: return f"Model {self.model_name} does not have the variable sharing property." return f"""Model {self.model_name} has the variable sharing property. Subalgebra 1: {set_to_str(self.subalgebra1)} Subalgebra 2: {set_to_str(self.subalgebra2)} """ def has_vsp_magical(model: Model, impfunction: ModelFunction, negation_defined: bool) -> VSP_Result: """ Checks whether a MaGIC model has the variable sharing property. """ # NOTE: No models with only one designated # value satisfies VSP if len(model.designated_values) == 1: return VSP_Result(False, model.name) assert model.ordering is not None, "Expected ordering table in model" top = model.ordering.top() bottom = model.ordering.bottom() # Compute I the set of tuples (x, y) where # x -> y does not take a designiated value I: List[Tuple[ModelValue, ModelValue]] = [] for (x, y) in product(model.designated_values, model.designated_values): if impfunction(x, y) not in model.designated_values: I.append((x, y)) # Find the subalgebras which falsify implication for xys in I: xi = xys[0] # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and xi == bottom: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and xi == top: continue yi = xys[1] # Discard (A, {⊤} ∪ B') subalgebras if top is not None and yi == top: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and yi == bottom: continue # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b if model.ordering.is_lt(xi, yi): continue # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined if negation_defined and model.ordering.is_lt(yi, xi): continue # Compute the left closure of the set containing xi under all the operations carrier_set_left: Set[ModelValue] = model_closure({xi,}, model.logical_operations, bottom) # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and bottom in carrier_set_left: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined if top is not None and negation_defined and top in carrier_set_left: continue # Compute the closure of all operations # with just the ys carrier_set_right: Set[ModelValue] = model_closure({yi,}, model.logical_operations, top) # Discard (A, {⊤} ∪ B') subalgebras if top is not None and top in carrier_set_right: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined if bottom is not None and negation_defined and bottom in carrier_set_right: continue # Discard subalgebras that intersect if not carrier_set_left.isdisjoint(carrier_set_right): continue # Check whether for all pairs in the subalgebra, # that implication is falsified. falsified = True for (x2, y2) in product(carrier_set_left, carrier_set_right): if impfunction(x2, y2) in model.designated_values: falsified = False break if falsified: return VSP_Result(True, model.name, carrier_set_left, carrier_set_right) return VSP_Result(False, model.name) def has_vsp_smt(model: Model, impfn: ModelFunction) -> VSP_Result: """ Checks whether a given model satisfies the variable sharing property via SMT """ if not SMT_LOADED: raise Exception("Z3 is not property installed, cannot check via SMT") encoder = SMTModelEncoder(model) # Create predicates for our two subalgebras IsInK1 = encoder.create_predicate("IsInK1", 1) IsInK2 = encoder.create_predicate("IsInK2", 1) # Enforce that our two subalgebras are non-empty encoder.solver.add(Or([IsInK1(x) for x in encoder.smt_carrier_set])) encoder.solver.add(Or([IsInK2(x) for x in encoder.smt_carrier_set])) # K1/K2 are closed under the operations for model_fn, smt_fn in encoder.model_function_map.items(): for xs in product(encoder.smt_carrier_set, repeat=model_fn.arity): encoder.solver.add( Implies( And([IsInK1(x) for x in xs]), IsInK1(smt_fn(*xs)) ) ) encoder.solver.add( Implies( And([IsInK2(x) for x in xs]), IsInK2(smt_fn(*xs)) ) ) # x -> y is non-designated smt_imp = encoder.model_function_map[impfn] for (x, y) in product(encoder.smt_carrier_set, encoder.smt_carrier_set): encoder.solver.add( Implies( And(IsInK1(x), IsInK2(y)), encoder.is_designated(smt_imp(x, y)) == False ) ) # Execute solver if encoder.solver.check() == sat: # Extract subalgebras smt_model = encoder.solver.model() K1_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK1(x))] K1 = {ModelValue(str(x)) for x in K1_smt} K2_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK2(x))] K2 = {ModelValue(str(x)) for x in K2_smt} return VSP_Result(True, model.name, K1, K2) else: return VSP_Result(False, model.name) def has_vsp(model: Model, impfunction: ModelFunction, negation_defined: bool) -> VSP_Result: if model.is_magical: return has_vsp_magical(model, impfunction, negation_defined) return has_vsp_smt(model)