diff --git a/R.py b/R.py index 426941a..4ce4b04 100644 --- a/R.py +++ b/R.py @@ -12,7 +12,7 @@ from logic import ( ) from model import Model, ModelFunction, ModelValue, satisfiable from generate_model import generate_model -from vsp import has_vsp +# from vsp import has_vsp # =================================================== @@ -106,7 +106,7 @@ designated_values = {a1} logical_operations = { mnegation, mimplication, mconjunction, mdisjunction } -R_model_2 = Model(carrier_set, logical_operations, designated_values, "R2") +R_model_2 = Model(carrier_set, logical_operations, designated_values, None, "R2") interpretation = { Negation: mnegation, @@ -132,8 +132,8 @@ solutions = generate_model(R_logic, model_size, print_model=False) print(f"Found {len(solutions)} satisfiable models") -for model, interpretation in solutions: - print(has_vsp(model, interpretation)) +# for model, interpretation in solutions: +# print(has_vsp(model, interpretation)) print("*" * 30) @@ -301,7 +301,7 @@ mdisjunction = ModelFunction(2, { logical_operations = { mnegation, mimplication, mconjunction, mdisjunction } -R_model_6 = Model(carrier_set, logical_operations, designated_values, "R6") +R_model_6 = Model(carrier_set, logical_operations, designated_values, None, "R6") interpretation = { Negation: mnegation, @@ -312,4 +312,4 @@ interpretation = { print(R_model_6) print(f"Model {R_model_6.name} satisfies logic {R_logic.name}?", satisfiable(R_logic, R_model_6, interpretation)) -print(has_vsp(R_model_6, interpretation)) +# print(has_vsp(R_model_6, interpretation)) diff --git a/logic.py b/logic.py index 5b2994c..7775590 100644 --- a/logic.py +++ b/logic.py @@ -27,8 +27,6 @@ class Operation: class Term: def __init__(self): pass - def __lt__(self, y): - return Inequation(self, y) class PropositionalVariable(Term): def __init__(self, name): @@ -70,23 +68,6 @@ Disjunction = Operation("∨", 2) Implication = Operation("→", 2) Necessitation = Operation("!", 1) -class Inequation: - def __init__(self, antecedant : Term, consequent: Term): - self.antecedant = antecedant - self.consequent = consequent - def __str__(self): - return str(self.antecedant) + "≤" + str(self.consequent) - -class InequalityRule: - def __init__(self, premises : Set[Inequation], conclusion: Inequation): - self.premises = premises - self.conclusion = conclusion - - def __str__(self): - str_premises = [str(p) for p in self.premises] - str_premises2 = "{" + ",".join(str_premises) + "}" - return str(str_premises2) + "=>" + str(self.conclusion) - class Rule: def __init__(self, premises : Set[Term], conclusion: Term): self.premises = premises diff --git a/model.py b/model.py index 2fff5ac..429a26e 100644 --- a/model.py +++ b/model.py @@ -9,16 +9,19 @@ from logic import ( ) from collections import defaultdict from functools import cached_property, lru_cache, reduce -from itertools import chain, combinations_with_replacement, permutations, product +from itertools import ( + chain, combinations_with_replacement, + permutations, product +) from typing import Dict, List, Optional, Set, Tuple __all__ = ['ModelValue', 'ModelFunction', 'Model', 'Interpretation'] class ModelValue: - def __init__(self, name): + def __init__(self, name: str, hashed_value: Optional[int] = None): self.name = name - self.hashed_value = hash(self.name) + self.hashed_value = hashed_value if hashed_value is not None else hash(self.name) self.__setattr__ = immutable def __str__(self): return self.name @@ -27,7 +30,7 @@ class ModelValue: def __eq__(self, other): return isinstance(other, ModelValue) and self.name == other.name def __deepcopy__(self, _): - return ModelValue(self.name) + return ModelValue(self.name, self.hashed_value) class ModelFunction: def __init__(self, arity: int, mapping, operation_name = ""): @@ -103,18 +106,94 @@ def binary_function_str(f: ModelFunction) -> str: Interpretation = Dict[Operation, ModelFunction] +class OrderTable: + def __init__(self): + # a : {x | x <= a } + self.le_map: Dict[ModelValue, Set[ModelValue]] = defaultdict(set) + # a : {x | x >= a} + self.ge_map: Dict[ModelValue, Set[ModelValue]] = defaultdict(set) + + def add(self, x, y): + """ + Add x <= y + """ + self.le_map[y].add(x) + self.ge_map[x].add(y) + + def is_lt(self, x, y): + return x in self.le_map[y] + + def meet(self, x, y) -> Optional[ModelValue]: + X = self.le_map[x] + Y = self.le_map[y] + + candidates = X.intersection(Y) + + # Grab all elements greater than each of the candidates + candidate_ge_maps = (self.ge_map[candidate] for candidate in candidates) + common_ge_values = reduce(set.intersection, candidate_ge_maps) + + # Intersect with candidates to get the values that satisfy + # the meet properties + result_set = candidates.intersection(common_ge_values) + + # NOTE: The meet may not exist, in which case return None + result = next(iter(result_set), None) + return result + + def join(self, x, y) -> Optional[ModelValue]: + X = self.ge_map[x] + Y = self.ge_map[y] + + candidates = X.intersection(Y) + + # Grab all elements smaller than each of the candidates + candidate_le_maps = (self.le_map[candidate] for candidate in candidates) + common_le_values = reduce(set.intersection, candidate_le_maps) + + # Intersect with candidatse to get the values that satisfy + # the join properties + result_set = candidates.intersection(common_le_values) + + # NOTE: The join may not exist, in which case return None + result = next(iter(result_set), None) + return result + + def top(self) -> Optional[ModelValue]: + ge_maps = (self.ge_map[candidate] for candidate in self.ge_map) + result_set = reduce(set.intersection, ge_maps) + + # Either not unique or does not exist + if len(result_set) != 1: + return None + + return next(iter(result_set)) + + def bottom(self) -> Optional[ModelValue]: + le_maps = (self.le_map[candidate] for candidate in self.le_map) + result_set = reduce(set.intersection, le_maps) + + # Either not unique or does not exist + if len(result_set) != 1: + return None + + return next(iter(result_set)) + + class Model: def __init__( self, carrier_set: Set[ModelValue], logical_operations: Set[ModelFunction], designated_values: Set[ModelValue], + ordering: Optional[OrderTable] = None, name: Optional[str] = None ): assert designated_values <= carrier_set self.carrier_set = carrier_set self.logical_operations = logical_operations self.designated_values = designated_values + self.ordering = ordering self.name = str(abs(hash(( frozenset(carrier_set), frozenset(logical_operations), @@ -215,86 +294,61 @@ def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, Mode return True - def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction], forbidden_element: Optional[ModelValue]) -> Set[ModelValue]: """ Given an initial set of model values and a set of model functions, compute the complete set of model values that are closed under the operations. - If top or bottom is encountered, then we end the saturation procedure early. + If the forbidden element is encountered, then we end the saturation procedure early. """ closure_set: Set[ModelValue] = initial_set last_new: Set[ModelValue] = initial_set changed: bool = True forbidden_found = False + arities = set() + for mfun in mfunctions: + arities.add(mfun.arity) + while changed: changed = False new_elements: Set[ModelValue] = set() old_closure: Set[ModelValue] = closure_set - last_new # arity -> args - cached_args = defaultdict(list) + args_by_arity = defaultdict(list) - # Pass elements into each model function - for mfun in mfunctions: - - # If a previous function shared the same arity, - # we'll use the same set of computed arguments - # to pass into the model functions. - if mfun.arity in cached_args: - for args in cached_args[mfun.arity]: - # Compute the new elements - # given the cached arguments. - element = mfun(*args) - if element not in closure_set: - new_elements.add(element) - - # Optimization: Break out of computation - # early when forbidden element is found - if forbidden_element is not None and element == forbidden_element: - forbidden_found = True - break - - if forbidden_found: - break - - # We don't need to compute the arguments - # thanks to the cache, so move onto the - # next function. - continue - - # At this point, we don't have cached arguments, so we need - # to compute this set. - - # Each argument must have at least one new element to not repeat - # work. We'll range over the number of new model values within our - # argument. - for num_new in range(1, mfun.arity + 1): + # Motivation: We want to only compute arguments that we have not + # seen before + for arity in arities: + for num_new in range(1, arity + 1): new_args = combinations_with_replacement(last_new, r=num_new) - old_args = combinations_with_replacement(old_closure, r=mfun.arity - num_new) - # Determine every possible ordering of the concatenated - # new and old model values. + old_args = combinations_with_replacement(old_closure, r=arity - num_new) + # Determine every possible ordering of the concatenated new and + # old model values. for new_arg, old_arg in product(new_args, old_args): - for args in permutations(new_arg + old_arg): - cached_args[mfun.arity].append(args) - element = mfun(*args) - if element not in closure_set: - new_elements.add(element) + for combined_args in permutations(new_arg + old_arg): + args_by_arity[arity].append(combined_args) - # Optimization: Break out of computation - # early when forbidden element is found - if forbidden_element is not None and element == forbidden_element: - forbidden_found = True - break - if forbidden_found: - break + # Pass each argument into each model function + for mfun in mfunctions: + for args in args_by_arity[mfun.arity]: + # Compute the new elements + # given the cached arguments. + element = mfun(*args) + if element not in closure_set: + new_elements.add(element) - if forbidden_found: + # Optimization: Break out of computation + # early when forbidden element is found + if forbidden_element is not None and element == forbidden_element: + forbidden_found = True break + if forbidden_found: + break closure_set.update(new_elements) changed = len(new_elements) > 0 @@ -304,3 +358,47 @@ def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction], break return closure_set + + +def model_equivalence(model1: Model, model2: Model, ignore_constants: bool = False) -> bool: + """ + Takes two models and determines if they are equivalent. + Assumes for the model to be equilvalent that their + value names are equivalent as well. + """ + + if model1.carrier_set != model2.carrier_set: + return False + + if model1.designated_values != model2.designated_values: + return False + + model1_fn_names = set() + for fn in model1.logical_operations: + if fn.arity == 0 and ignore_constants: + continue + model1_fn_names.add(fn.operation_name) + + model2_fn_names = set() + for fn in model2.logical_operations: + if fn.arity == 0 and ignore_constants: + continue + model2_fn_names.add(fn.operation_name) + + if model1_fn_names != model2_fn_names: + return False + + for fn_name in model1_fn_names: + fn1 = next((fn for fn in model1.logical_operations if fn.operation_name == fn_name)) + fn2 = next((fn for fn in model2.logical_operations if fn.operation_name == fn_name)) + + if fn1.arity != fn2.arity: + return False + + # Check for functional equilvance + # That is for all inputs in the carrier set, the outputs are the same + for args in product(model1.carrier_set, repeat=fn1.arity): + if fn1(*args) != fn2(*args): + return False + + return True diff --git a/parse_magic.py b/parse_magic.py index bab221a..78fc495 100644 --- a/parse_magic.py +++ b/parse_magic.py @@ -4,9 +4,10 @@ Parses the Magic Ugly Data File Format Assumes the base logic is R with no extra connectives """ import re -from typing import TextIO, List, Optional, Tuple, Set, Dict +from typing import TextIO, List, Iterator, Optional, Tuple, Set, Dict +from itertools import product -from model import Model, ModelValue, ModelFunction +from model import Model, ModelValue, ModelFunction, OrderTable from logic import ( Implication, Conjunction, @@ -19,7 +20,7 @@ from logic import ( class SourceFile: def __init__(self, fileobj: TextIO): self.fileobj = fileobj - self.current_line = 0 + self.line_in_file = 0 self.reststr = "" def next_line(self): @@ -34,7 +35,7 @@ class SourceFile: return reststr contents = next(self.fileobj).strip() - self.current_line += 1 + self.line_in_file += 1 return contents def __next__(self): @@ -43,12 +44,9 @@ class SourceFile: """ if self.reststr == "": self.reststr = next(self.fileobj).strip() - self.current_line += 1 - - tokens = self.reststr.split(" ") - next_token = tokens[0] - self.reststr = " ".join(tokens[1:]) + self.line_in_file += 1 + next_token, _, self.reststr = self.reststr.partition(" ") return next_token class UglyHeader: @@ -63,8 +61,9 @@ class UglyHeader: class ModelBuilder: def __init__(self): self.size : int = 0 - self.carrier_set : Set[ModelValue] = set() + self.carrier_list : List[ModelValue] = [] self.mnegation: Optional[ModelFunction] = None + self.ordering: Optional[OrderTable] = None self.mconjunction: Optional[ModelFunction] = None self.mdisjunction: Optional[ModelFunction] = None self.designated_values: Set[ModelValue] = set() @@ -73,6 +72,45 @@ class ModelBuilder: # Map symbol to model function self.custom_model_functions: Dict[str, ModelFunction] = {} + def build(self, model_name: str) -> Tuple[Model, Dict[Operation, ModelFunction]]: + """Create Model""" + assert self.size > 0 + assert self.size + 1 == len(self.carrier_list) + assert len(self.designated_values) <= len(self.carrier_list) + assert self.mimplication is not None + + # Implication is required to be present + logical_operations = { self.mimplication } + interpretation = { + Implication: self.mimplication + } + + # Other model functions and logical + # operations are optional + if self.mnegation is not None: + logical_operations.add(self.mnegation) + interpretation[Negation] = self.mnegation + if self.mconjunction is not None: + logical_operations.add(self.mconjunction) + interpretation[Conjunction] = self.mconjunction + if self.mdisjunction is not None: + logical_operations.add(self.mdisjunction) + interpretation[Disjunction] = self.mdisjunction + if self.mnecessitation is not None: + logical_operations.add(self.mnecessitation) + interpretation[Necessitation] = self.mnecessitation + + # Custom model function definitions + for custom_mf in self.custom_model_functions.values(): + if custom_mf is not None: + logical_operations.add(custom_mf) + op = Operation(custom_mf.operation_name, custom_mf.arity) + interpretation[op] = custom_mf + + model = Model(set(self.carrier_list), logical_operations, self.designated_values, ordering=self.ordering, name=model_name) + return (model, interpretation) + + class Stage: def __init__(self, name: str): self.name = name @@ -99,8 +137,6 @@ class Stages: def add(self, name: str): stage = Stage(name) - stage.next = stage - stage.previous = self.last_added_stage # End stage is a sink so don't @@ -117,11 +153,16 @@ class Stages: def reset_after(self, name): """ - Resets the stage counters after a given stage. - This is to accurately reflect the name of the - model within MaGIC. + Resets the counters of every stage after + a given stage. + + This is to accurately reflect how names are + generated within magic. + Example: 1.1, 1.2, (reset after 1), 2.1, 2.2 """ stage = self.stages[name] + # NOTE: The process_model stage doesn't + # have a counter associated with it. while stage.name != "process_model": stage.reset() stage = stage.next @@ -130,15 +171,26 @@ class Stages: return self.stages[name] def name(self): + """ + Get the full name of where we are within + the parsing process. Takes into account + the stage number of all the stages seen + so far. + """ + + # Stages haven't been added yet result = "" stage = self.first_stage if stage is None: return "" + # There's only one stage result = f"{stage.num}" if stage.next == "process_model": return result + # Add every subsequent stage counter + # by appending .stage_num stage = stage.next while stage is not None: result += f".{stage.num}" @@ -169,19 +221,19 @@ def derive_stages(header: UglyHeader) -> Stages: return stages -def parse_matrices(infile: SourceFile) -> List[Tuple[Model, Dict]]: - solutions = [] +def parse_matrices(infile: SourceFile) -> Iterator[Tuple[Model, Dict[Operation, ModelFunction]]]: header = parse_header(infile) stages = derive_stages(header) first_run = True current_model_parts = ModelBuilder() + stage = stages.first_stage while True: match stage.name: case "end": break case "process_model": - process_model(stages.name(), current_model_parts, solutions) + yield current_model_parts.build(stages.name()) stage = stage.next case "size": processed = process_sizes(infile, current_model_parts, first_run) @@ -247,25 +299,25 @@ def parse_matrices(infile: SourceFile) -> List[Tuple[Model, Dict]]: stages.reset_after(stage.name) stage = stage.previous - return solutions - def process_sizes(infile: SourceFile, current_model_parts: ModelBuilder, first_run: bool) -> bool: + size: Optional[int] = None try: size = parse_size(infile, first_run) except StopIteration: - return False + pass + if size is None: return False - carrier_set = carrier_set_from_size(size) - current_model_parts.carrier_set = carrier_set + carrier_list = carrier_list_from_size(size) + current_model_parts.carrier_list = carrier_list current_model_parts.size = size return True def process_negations(infile: SourceFile, current_model_parts: ModelBuilder) -> bool: """Stage 2 (Optional)""" - mnegation = parse_single_monadic_connective(infile, "¬", current_model_parts.size) + mnegation = parse_single_monadic_connective(infile, "¬", current_model_parts.size, current_model_parts.carrier_list) if mnegation is None: return False @@ -274,11 +326,12 @@ def process_negations(infile: SourceFile, current_model_parts: ModelBuilder) -> def process_orders(infile: SourceFile, current_model_parts: ModelBuilder) -> bool: """Stage 3""" - result = parse_single_order(infile, current_model_parts.size) + result = parse_single_order(infile, current_model_parts.size, current_model_parts.carrier_list) if result is None: return False - mconjunction, mdisjunction = result + ordering, mconjunction, mdisjunction = result + current_model_parts.ordering = ordering current_model_parts.mconjunction = mconjunction current_model_parts.mdisjunction = mdisjunction @@ -286,7 +339,7 @@ def process_orders(infile: SourceFile, current_model_parts: ModelBuilder) -> boo def process_designateds(infile: SourceFile, current_model_parts: ModelBuilder) -> bool: """Stage 4""" - designated_values = parse_single_designated(infile, current_model_parts.size) + designated_values = parse_single_designated(infile, current_model_parts.size, current_model_parts.carrier_list) if designated_values is None: return False @@ -295,7 +348,7 @@ def process_designateds(infile: SourceFile, current_model_parts: ModelBuilder) - def process_implications(infile: SourceFile, current_model_parts: ModelBuilder) -> bool: """Stage 5""" - mimplication = parse_single_dyadic_connective(infile, "→", current_model_parts.size) + mimplication = parse_single_dyadic_connective(infile, "→", current_model_parts.size, current_model_parts.carrier_list) if mimplication is None: return False @@ -303,7 +356,7 @@ def process_implications(infile: SourceFile, current_model_parts: ModelBuilder) return True def process_necessitations(infile: SourceFile, current_model_parts: ModelBuilder) -> bool: - mnecessitation = parse_single_monadic_connective(infile, "!", current_model_parts.size) + mnecessitation = parse_single_monadic_connective(infile, "!", current_model_parts.size, current_model_parts.carrier_list) if mnecessitation is None: return False @@ -314,9 +367,9 @@ def process_custom_connective(infile: SourceFile, symbol: str, adicity: int, cur if adicity == 0: mfunction = parse_single_nullary_connective(infile, symbol) elif adicity == 1: - mfunction = parse_single_monadic_connective(infile, symbol, current_model_parts.size) + mfunction = parse_single_monadic_connective(infile, symbol, current_model_parts.size, current_model_parts.carrier_list) elif adicity == 2: - mfunction = parse_single_dyadic_connective(infile, symbol, current_model_parts.size) + mfunction = parse_single_dyadic_connective(infile, symbol, current_model_parts.size, current_model_parts.carrier_list) else: raise NotImplementedError("Unable to process connectives of adicity greater than 2") @@ -326,38 +379,6 @@ def process_custom_connective(infile: SourceFile, symbol: str, adicity: int, cur current_model_parts.custom_model_functions[symbol] = mfunction return True -def process_model(model_name: str, mp: ModelBuilder, solutions: List[Tuple[Model, Dict]]): - """Create Model""" - assert mp.size > 0 - assert mp.size + 1 == len(mp.carrier_set) - assert len(mp.designated_values) <= len(mp.carrier_set) - assert mp.mimplication is not None - - logical_operations = { mp.mimplication } - model = Model(mp.carrier_set, logical_operations, mp.designated_values, name=model_name) - interpretation = { - Implication: mp.mimplication - } - if mp.mnegation is not None: - logical_operations.add(mp.mnegation) - interpretation[Negation] = mp.mnegation - if mp.mconjunction is not None: - logical_operations.add(mp.mconjunction) - interpretation[Conjunction] = mp.mconjunction - if mp.mdisjunction is not None: - logical_operations.add(mp.mdisjunction) - interpretation[Disjunction] = mp.mdisjunction - if mp.mnecessitation is not None: - logical_operations.add(mp.mnecessitation) - interpretation[Necessitation] = mp.mnecessitation - - for custom_mf in mp.custom_model_functions.values(): - if custom_mf is not None: - logical_operations.add(custom_mf) - op = Operation(custom_mf.operation_name, custom_mf.arity) - interpretation[op] = custom_mf - - solutions.append((model, interpretation)) def parse_header(infile: SourceFile) -> UglyHeader: """ @@ -378,20 +399,19 @@ def parse_header(infile: SourceFile) -> UglyHeader: custom_model_functions.append((arity, symbol)) return UglyHeader(negation_defined, necessitation_defined, custom_model_functions) -def carrier_set_from_size(size: int) -> Set[ModelValue]: +def carrier_list_from_size(size: int) -> List[ModelValue]: """ Construct a carrier set of model values based on the desired size. """ - return { + return [ mvalue_from_index(i) for i in range(size + 1) - } + ] def parse_size(infile: SourceFile, first_run: bool) -> Optional[int]: """ Parse the line representing the matrix size. """ - size = int(infile.next_line()) # HACK: When necessitation and custom connectives are enabled @@ -402,7 +422,9 @@ def parse_size(infile: SourceFile, first_run: bool) -> Optional[int]: if size == -1: return None - assert size > 0, f"Unexpected size at line {infile.current_line}" + + assert size > 0, f"Unexpected size at line {infile.line_in_file}" + return size def mvalue_from_index(i: int) -> ModelValue: @@ -418,55 +440,9 @@ def parse_mvalue(x: str) -> ModelValue: """ return mvalue_from_index(int(x)) -def determine_cresult(size: int, ordering: Dict[ModelValue, ModelValue], a: ModelValue, b: ModelValue) -> ModelValue: - """ - Determine what a ∧ b should be given the ordering table. - """ - for i in range(size + 1): - c = mvalue_from_index(i) - if not ordering[(c, a)]: - continue - if not ordering[(c, b)]: - continue - - invalid = False - for j in range(size + 1): - d = mvalue_from_index(j) - if c == d: - continue - if ordering[(c, d)]: - if ordering[(d, a)] and ordering [(d, b)]: - invalid = True - - if not invalid: - return c - -def determine_dresult(size: int, ordering: Dict[ModelValue, ModelValue], a: ModelValue, b: ModelValue) -> ModelValue: - """ - Determine what a ∨ b should be given the ordering table. - """ - for i in range(size + 1): - c = mvalue_from_index(i) - if not ordering[(a, c)]: - continue - if not ordering[(b, c)]: - continue - - invalid = False - - for j in range(size + 1): - d = mvalue_from_index(j) - if d == c: - continue - if ordering[(d, c)]: - if ordering[(a, d)] and ordering[(b, d)]: - invalid = True - - if not invalid: - return c - -def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[ModelFunction, ModelFunction]]: +def parse_single_order(infile: SourceFile, size: int, carrier_list: List[ModelValue]) -> Optional[ + Tuple[OrderTable, Optional[ModelFunction], Optional[ModelFunction]]]: """ Parse the line representing the ordering table """ @@ -476,47 +452,38 @@ def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[ModelFun table = line.split(" ") - assert len(table) == (size + 1)**2, f"Order table doesn't match expected size at line {infile.current_line}" + assert len(table) == (size + 1)**2, f"Order table doesn't match expected size at line {infile.line_in_file}" + ordering = OrderTable() omapping = {} table_i = 0 - for i in range(size + 1): - x = mvalue_from_index(i) - for j in range(size + 1): - y = mvalue_from_index(j) - omapping[(x, y)] = table[table_i] == '1' - table_i += 1 + for x, y in product(carrier_list, carrier_list): + omapping[(x, y)] = table[table_i] == '1' + if table[table_i] == '1': + ordering.add(x, y) + table_i += 1 cmapping = {} dmapping = {} - for i in range(size + 1): - x = mvalue_from_index(i) - for j in range(size + 1): - y = mvalue_from_index(j) - - cresult = determine_cresult(size, omapping, x, y) - if cresult is None: - print("[Warning] Conjunction and Disjunction are not well-defined") - print(f"{x} ∧ {y} = ??") - return None, None - cmapping[(x, y)] = cresult - - dresult = determine_dresult(size, omapping, x, y) - if dresult is None: - print("[Warning] Conjunction and Disjunction are not well-defined") - print(f"{x} ∨ {y} = ??") - return None, None - dmapping[(x, y)] = dresult + for x, y in product(carrier_list, carrier_list): + cresult = ordering.meet(x, y) + if cresult is None: + return ordering, None, None + cmapping[(x, y)] = cresult + dresult = ordering.join(x, y) + if dresult is None: + return ordering, None, None + dmapping[(x, y)] = dresult mconjunction = ModelFunction(2, cmapping, "∧") mdisjunction = ModelFunction(2, dmapping, "∨") - return mconjunction, mdisjunction + return ordering, mconjunction, mdisjunction -def parse_single_designated(infile: SourceFile, size: int) -> Optional[Set[ModelValue]]: +def parse_single_designated(infile: SourceFile, size: int, carrier_list: List[ModelValue]) -> Optional[Set[ModelValue]]: """ Parse the line representing which model values are designated. """ @@ -525,13 +492,12 @@ def parse_single_designated(infile: SourceFile, size: int) -> Optional[Set[Model return None row = line.split(" ") - assert len(row) == size + 1, f"Designated table doesn't match expected size at line {infile.current_line}" + assert len(row) == size + 1, f"Designated table doesn't match expected size at line {infile.line_in_file}" designated_values = set() - for i, j in zip(range(size + 1), row): + for x, j in zip(carrier_list, row): if j == '1': - x = mvalue_from_index(i) designated_values.add(x) return designated_values @@ -543,29 +509,28 @@ def parse_single_nullary_connective(infile: SourceFile, symbol: str) -> Optional return None row = line.split(" ") - assert len(row) == 1, f"More than one assignment for a nullary connective was provided at line {infile.current_line}" + assert len(row) == 1, f"More than one assignment for a nullary connective was provided at line {infile.line_in_file}" mapping = {} mapping[()] = parse_mvalue(row[0]) return ModelFunction(0, mapping, symbol) -def parse_single_monadic_connective(infile: SourceFile, symbol: str, size: int) -> Optional[ModelFunction]: +def parse_single_monadic_connective(infile: SourceFile, symbol: str, size: int, carrier_list: List[ModelValue]) -> Optional[ModelFunction]: line = infile.next_line() if line == '-1': return None row = line.split(" ") - assert len(row) == size + 1, f"{symbol} table doesn't match size at line {infile.current_line}" + assert len(row) == size + 1, f"{symbol} table doesn't match size at line {infile.line_in_file}" mapping = {} - for i, j in zip(range(size + 1), row): - x = mvalue_from_index(i) + for x, j in zip(carrier_list, row): y = parse_mvalue(j) mapping[(x, )] = y return ModelFunction(1, mapping, symbol) -def parse_single_dyadic_connective(infile: SourceFile, symbol: str, size: int) -> Optional[ModelFunction]: +def parse_single_dyadic_connective(infile: SourceFile, symbol: str, size: int, carrier_list: List[ModelValue]) -> Optional[ModelFunction]: first_token = next(infile) if first_token == "-1": return None @@ -574,20 +539,14 @@ def parse_single_dyadic_connective(infile: SourceFile, symbol: str, size: int) - try: table = [first_token] + [next(infile) for _ in range((size + 1)**2 - 1)] except StopIteration: - pass - - assert len(table) == (size + 1)**2, f"{symbol} table does not match expected size at line {infile.current_line}" + raise Exception(f"{symbol} table does not match expected size at line {infile.line_in_file}") mapping = {} table_i = 0 - for i in range(size + 1): - x = mvalue_from_index(i) - for j in range(size + 1): - y = mvalue_from_index(j) - r = parse_mvalue(table[table_i]) - table_i += 1 - - mapping[(x, y)] = r + for x, y in product(carrier_list, carrier_list): + r = parse_mvalue(table[table_i]) + table_i += 1 + mapping[(x, y)] = r return ModelFunction(2, mapping, symbol) diff --git a/utils/README.md b/utils/README.md new file mode 100644 index 0000000..6c0f260 --- /dev/null +++ b/utils/README.md @@ -0,0 +1 @@ +This folder contains scripts that may be used during experimentation. These are intended to be used ad-hoc and we do not guarentee the maitainance of these scripts. \ No newline at end of file diff --git a/utils/compare_vsp_results.py b/utils/compare_vsp_results.py new file mode 100644 index 0000000..82c587d --- /dev/null +++ b/utils/compare_vsp_results.py @@ -0,0 +1,105 @@ +""" +Given two MaGIC ugly data files that correspond to +the same logic. Report any differences in the models +that exhibit VSP. + +Overall process: +- Determine which models in file 1 have VSP +- Print if model does not exist in file 2 +- For models in file 2 that were not already encountered for, + check if they have VSP. +- Print models that do +""" +import argparse +import os +import sys +sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + +import argparse + +from model import model_equivalence +from parse_magic import SourceFile, parse_matrices +from vsp import has_vsp +from vspursuer import restructure_solutions + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Compare models that have VSP in two ugly files") + parser.add_argument("ugly1", type=str, help="First ugly data file") + parser.add_argument("ugly2", type=str, help="Second ugly data file") + parser.add_argument("--ignore-constants", action='store_true', help="When it comes to model equivalance, ignore constants") + args = vars(parser.parse_args()) + + data_file1 = open(args['ugly1'], "r") + solutions1 = parse_matrices(SourceFile(data_file1)) + solutions1 = restructure_solutions(solutions1, None) + + data_file2 = open(args['ugly2'], "r") + solutions2 = parse_matrices(SourceFile(data_file2)) + solutions2 = list(restructure_solutions(solutions2, None)) + + ignore_constants = args.get("ignore_constants", False) + + # Total count of models + total_models1 = 0 + total_models2 = 0 + + # Models that exhibit VSP + good_models1 = 0 + good_models2 = 0 + + # Models that don't exhibit VSP + bad_models1 = 0 + bad_models2 = 0 + + # Models that exhibit VSP but does + # not exist in the other file. + extra_models1 = 0 + extra_models2 = 0 + + for model, impfunction, negation_defined in solutions1: + total_models1 += 1 + vsp_result = has_vsp(model, impfunction, negation_defined) + + if vsp_result.has_vsp: + good_models1 += 1 + # Check to see if model exists in file 2 + match_found_index = (False, -1) + for i in range(len(solutions2) - 1, -1, -1): + if model_equivalence(model, solutions2[i][0], ignore_constants): + match_found_index = (True, i) + break + + if match_found_index[0]: + # If so, remove the model from the second set + total_models2 += 1 + good_models2 += 1 + del solutions2[match_found_index[1]] + else: + extra_models1 += 1 + print(f"VSP Model {model.name} not found in file 2.") + print(model) + else: + bad_models1 += 1 + + + # Check through the remaining models in the second set + for model, impfunction, negation_defined in solutions2: + total_models2 += 1 + vsp_result = has_vsp(model, impfunction, negation_defined) + + if not vsp_result.has_vsp: + bad_models2 += 1 + else: + print("VSP model", model.name, "does not appear in file 1") + good_models2 += 1 + extra_models2 += 1 + + + print("File 1 has a total of", total_models1, "models.") + print("Out of which,", good_models1, "exhibit VSP while", bad_models1, "do not.") + print("File 1 has a total of", extra_models1, "which exhibit VSP but do not appear in file 2.") + + print("") + print("File 2 has a total of", total_models2, "models") + print("Out of which,", good_models2, "exhibit VSP while", bad_models2, "do not.") + print("File 2 has a total of", extra_models2, "which exhibit VSP but do not appear in file 1.") diff --git a/utils/hasse.py b/utils/hasse.py new file mode 100644 index 0000000..97074bc --- /dev/null +++ b/utils/hasse.py @@ -0,0 +1,54 @@ +""" +Given a model, create a Hasse diagram. + +Note: This has a dependency on the hasse-diagram library +https://pypi.org/project/hasse-diagram/ +""" +import argparse +import os +import sys +sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + +from model import Model +from parse_magic import SourceFile, parse_matrices + +import numpy as np +import hassediagram + +__all__ = ['plot_model_hassee'] + +def plot_model_hassee(model: Model): + assert model.ordering is not None + carrier_list = list(model.carrier_set) + hasse_ordering = [] + for elem1 in carrier_list: + elem_ordering = [] + for elem2 in carrier_list: + elem_ordering.append( + 1 if model.ordering.is_lt(elem1, elem2) else 0 + ) + hasse_ordering.append(elem_ordering) + hassediagram.plot_hasse(np.array(hasse_ordering), carrier_list) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Show hassee diagram for model") + parser.add_argument("uglyfile", type=str, help="Path to ugly data file") + parser.add_argument("modelname", type=str, help="Name of model within file") + args = vars(parser.parse_args()) + + data_file = open(args['uglyfile'], "r") + solutions = parse_matrices(SourceFile(data_file)) + + requested_model = None + + for model, _ in solutions: + if model.name == args['modelname']: + requested_model = model + break + + if requested_model is None: + print("Model name", args['modelname'], "not found.") + sys.exit(0) + + plot_model_hassee(requested_model) diff --git a/utils/print_model.py b/utils/print_model.py new file mode 100644 index 0000000..027c0e3 --- /dev/null +++ b/utils/print_model.py @@ -0,0 +1,30 @@ +""" +Print a model given it's name +and ugly data file +""" +import argparse +import os +import sys +sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + +from parse_magic import SourceFile, parse_matrices + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Show hassee diagram for model") + parser.add_argument("uglyfile", type=str, help="Path to ugly data file") + parser.add_argument("modelname", type=str, help="Name of model within file") + args = vars(parser.parse_args()) + + data_file = open(args['uglyfile'], "r") + solutions = parse_matrices(SourceFile(data_file)) + + model_found = False + + for model, _ in solutions: + if model.name == args['modelname']: + model_found = True + print(model) + break + + if not model_found: + print("Model", args['modelname'], "not found.") diff --git a/vsp.py b/vsp.py index 6a50c63..1a861f7 100644 --- a/vsp.py +++ b/vsp.py @@ -2,83 +2,12 @@ Check to see if the model has the variable sharing property. """ -from itertools import chain, combinations, product -from typing import Dict, List, Optional, Set, Tuple +from itertools import product +from typing import List, Optional, Set, Tuple from common import set_to_str from model import ( Model, model_closure, ModelFunction, ModelValue ) -from logic import Conjunction, Disjunction, Implication, Operation - -def preseed( - initial_set: Set[ModelValue], - cache:List[Tuple[Set[ModelValue], Set[ModelValue]]]): - """ - Given a cache of previous model_closure calls, - use this to compute an initial model closure - set based on the initial set. - - Basic Idea: - Let {1, 2, 3} -> X be in the cache. - If {1,2,3} is a subset of initial set, - then X is the subset of the output of model_closure. - - This is used to speed up subsequent calls to model_closure - """ - candidate_preseed: Tuple[Set[ModelValue], int] = (None, None) - - for i, o in cache: - if i < initial_set: - cost = len(initial_set - i) - # If i is a subset with less missing elements than - # the previous candidate, then it's the new candidate. - if candidate_preseed[1] is None or cost < candidate_preseed[1]: - candidate_preseed = o, cost - - same_set = candidate_preseed[1] == 0 - return candidate_preseed[0], same_set - - -def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]: - """ - Find the top of the order lattice. - T || a = T, T && a = a for all a in the carrier set - """ - if mconjunction is None or mdisjunction is None: - return None - - for x in algebra: - is_top = True - for y in algebra: - if mdisjunction(x, y) != x or mconjunction(x, y) != y: - is_top = False - break - if is_top: - return x - - print("[Warning] Failed to find the top of the lattice") - return None - -def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]: - """ - Find the bottom of the order lattice - F || a = a, F && a = F for all a in the carrier set - """ - if mconjunction is None or mdisjunction is None: - return None - - for x in algebra: - is_bottom = True - for y in algebra: - if mdisjunction(x, y) != y or mconjunction(x, y) != x: - is_bottom = False - break - if is_bottom: - return x - - print("[Warning] Failed to find the bottom of the lattice") - return None - class VSP_Result: def __init__( @@ -98,98 +27,90 @@ Subalgebra 1: {set_to_str(self.subalgebra1)} Subalgebra 2: {set_to_str(self.subalgebra2)} """ -def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP_Result: +def has_vsp(model: Model, impfunction: ModelFunction, + negation_defined: bool) -> VSP_Result: """ Checks whether a model has the variable sharing property. """ - impfunction = interpretation[Implication] - mconjunction = interpretation.get(Conjunction) - mdisjunction = interpretation.get(Disjunction) - top = find_top(model.carrier_set, mconjunction, mdisjunction) - bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction) - # NOTE: No models with only one designated # value satisfies VSP if len(model.designated_values) == 1: return VSP_Result(False, model.name) + assert model.ordering is not None, "Expected ordering table in model" + + top = model.ordering.top() + bottom = model.ordering.bottom() + # Compute I the set of tuples (x, y) where # x -> y does not take a designiated value - I: Set[Tuple[ModelValue, ModelValue]] = set() + I: List[Tuple[ModelValue, ModelValue]] = [] for (x, y) in product(model.carrier_set, model.carrier_set): if impfunction(x, y) not in model.designated_values: - I.add((x, y)) - - # Construct the powerset of I without the empty set - s = list(I) - I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1)) - # ((x1, y1)), ((x1, y1), (x2, y2)), ... - - # Closure cache - closure_cache: List[Tuple[Set[ModelValue], Set[ModelValue]]] = [] + I.append((x, y)) # Find the subalgebras which falsify implication - for xys in I_power: + for xys in I: - xs = {xy[0] for xy in xys} - orig_xs = xs - cached_xs = preseed(xs, closure_cache) - if cached_xs[0] is not None: - xs |= cached_xs[0] + xi = xys[0] - ys = {xy[1] for xy in xys} - orig_ys = ys - cached_ys = preseed(ys, closure_cache) - if cached_ys[0] is not None: - ys |= cached_ys[0] - - - # NOTE: Optimziation before model_closure - # If the two subalgebras intersect, move - # onto the next pair - if len(xs & ys) > 0: + # Discard ({⊥} ∪ A', B) subalgebras + if bottom is not None and xi == bottom: continue - # NOTE: Optimization - # If the left subalgebra contains bottom - # or the right subalgebra contains top - # skip this pair - if top is not None and top in ys: - continue - if bottom is not None and bottom in xs: + # Discard ({⊤} ∪ A', B) subalgebras when negation is defined + if top is not None and negation_defined and xi == top: continue - # Compute the closure of all operations - # with just the xs - carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations, bottom) + yi = xys[1] - # Save to cache - if cached_xs[0] is not None and not cached_ys[1]: - closure_cache.append((orig_xs, carrier_set_left)) + # Discard (A, {⊤} ∪ B') subalgebras + if top is not None and yi == top: + continue + # Discard (A, {⊥} ∪ B') subalgebras when negation is defined + if bottom is not None and negation_defined and yi == bottom: + continue + + # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b + if model.ordering.is_lt(xi, yi): + continue + + # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined + if negation_defined and model.ordering.is_lt(yi, xi): + continue + + # Compute the left closure of the set containing xi under all the operations + carrier_set_left: Set[ModelValue] = model_closure({xi,}, model.logical_operations, bottom) + + # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and bottom in carrier_set_left: continue + # Discard ({⊤} ∪ A', B) subalgebras when negation is defined + if top is not None and negation_defined and top in carrier_set_left: + continue + # Compute the closure of all operations # with just the ys - carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations, top) - - # Save to cache - if cached_ys[0] is not None and not cached_ys[1]: - closure_cache.append((orig_ys, carrier_set_right)) + carrier_set_right: Set[ModelValue] = model_closure({yi,}, model.logical_operations, top) + # Discard (A, {⊤} ∪ B') subalgebras if top is not None and top in carrier_set_right: continue - # If the carrier set intersects, then move on to the next - # subalgebra - if len(carrier_set_left & carrier_set_right) > 0: + # Discard (A, {⊥} ∪ B') subalgebras when negation is defined + if bottom is not None and negation_defined and bottom in carrier_set_right: continue - # See if for all pairs in the subalgebras, that - # implication is falsified + # Discard subalgebras that intersect + if not carrier_set_left.isdisjoint(carrier_set_right): + continue + + # Check whether for all pairs in the subalgebra, + # that implication is falsified. falsified = True for (x2, y2) in product(carrier_set_left, carrier_set_right): if impfunction(x2, y2) in model.designated_values: diff --git a/vspursuer.py b/vspursuer.py index 5a6ee55..d9d9e53 100755 --- a/vspursuer.py +++ b/vspursuer.py @@ -1,45 +1,214 @@ #!/usr/bin/env python3 -from os import cpu_count -import argparse -import multiprocessing -from parse_magic import ( - SourceFile, - parse_matrices -) +from datetime import datetime +from typing import Dict, Iterator, Optional, Tuple +from queue import Empty as QueueEmpty +import argparse +import multiprocessing as mp + +from logic import Negation, Implication, Operation +from model import Model, ModelFunction +from parse_magic import SourceFile, parse_matrices from vsp import has_vsp, VSP_Result +def print_with_timestamp(message): + current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") + print(f"[{current_time}] {message}", flush=True) + +def restructure_solutions(solutions: Iterator[Tuple[Model, Dict[Operation, ModelFunction]]], skip_to: Optional[str]) -> \ + Iterator[Tuple[Model, ModelFunction, Optional[ModelFunction], Optional[ModelFunction], Optional[ModelFunction]]]: + """ + When subprocess gets spawned, the logical operations will + have a different memory address than what's expected in interpretation. + Therefore, we need to pass the model functions directly instead. + + While we're at it, filter out models until we get to --skip-to + if applicable. + """ + start_processing = skip_to is None + for model, interpretation in solutions: + # If skip_to is defined, then don't process models + # until then. + if not start_processing and model.name != skip_to: + continue + start_processing = True + + # NOTE: Implication must be defined, the rest may not + impfunction = interpretation[Implication] + negation_defined = Negation in interpretation + yield (model, impfunction, negation_defined) + +def has_vsp_plus_model(model, impfunction, negation_defined) -> Tuple[Optional[Model], VSP_Result]: + """ + Wrapper which also stores the models along with its vsp result + """ + vsp_result = has_vsp(model, impfunction, negation_defined) + # NOTE: Memory optimization - Don't return model if it doesn't have VSP + model = model if vsp_result.has_vsp else None + return (model, vsp_result) + +def worker_vsp(task_queue: mp.Queue, result_queue: mp.Queue): + """ + Worker process which processes models from the task + queue and adds the result to the result_queue. + + Adds the sentinal value None when exception occurs and when there's + no more to process. + """ + try: + while True: + task = task_queue.get() + # If sentinal value, break + if task is None: + break + (model, impfunction, negation_defined) = task + result = has_vsp_plus_model(model, impfunction, negation_defined) + result_queue.put(result) + finally: + # Either an exception occured or the worker finished + # Push sentinal value + result_queue.put(None) + +def worker_parser(data_file_path: str, num_sentinal_values: int, task_queue: mp.Queue, skip_to: Optional[str]): + """ + Function which parses the MaGIC file + and adds models to the task_queue. + + Intended to be deployed with a dedicated process. + """ + try: + data_file = open(data_file_path, "r") + solutions = parse_matrices(SourceFile(data_file)) + solutions = restructure_solutions(solutions, skip_to) + + while True: + try: + item = next(solutions) + task_queue.put(item) + except StopIteration: + break + finally: + data_file.close() + for _ in range(num_sentinal_values): + task_queue.put(None) + +def multi_process_runner(num_cpu: int, data_file_path: str, skip_to: Optional[str]): + """ + Run VSPursuer in a multi-process configuration. + """ + assert num_cpu > 1 + + num_tested = 0 + num_has_vsp = 0 + num_workers = num_cpu - 1 + + # Create queues + task_queue = mp.Queue(maxsize=1000) + result_queue = mp.Queue() + + # Create dedicated process to parse the MaGIC file + process_parser = mp.Process(target=worker_parser, args=(data_file_path, num_workers, task_queue, skip_to)) + process_parser.start() + + # Create dedicated processes which check VSP + process_workers = [] + for _ in range(num_workers): + p = mp.Process(target=worker_vsp, args=(task_queue, result_queue)) + process_workers.append(p) + p.start() + + + # Check results and add new tasks until finished + result_sentinal_count = 0 + while True: + # Read a result + try: + result = result_queue.get(True, 60) + except QueueEmpty: + if all((not p.is_alive() for p in process_workers)): + # All workers finished without us receiving all the + # sentinal values. + break + + task_queue_size = 0 + try: + task_queue_size = task_queue.qsize() + except NotImplementedError: + # MacOS doesn't implement this + pass + + if task_queue_size == 0 and not process_parser.is_alive(): + # For Linux/Windows this means that the process_parser + # died before sending the sentinal values. + # For Mac, this doesn't guarentee anything but might + # as well push more sentinal values. + for _ in range(num_workers): + task_queue.put(None) + + # Don't do anymore work, wait again for a result + continue + + + # When we receive None, it means a child process has finished + if result is None: + result_sentinal_count += 1 + # If all workers have finished break + if result_sentinal_count == len(process_workers): + break + continue + + # Process result + model, vsp_result = result + print_with_timestamp(vsp_result) + num_tested += 1 + + if vsp_result.has_vsp: + print(model) + + if vsp_result.has_vsp: + num_has_vsp += 1 + + print_with_timestamp(f"Tested {num_tested} models, {num_has_vsp} of which satisfy VSP") + +def single_process_runner(data_file_path: str, skip_to: Optional[str]): + num_tested = 0 + num_has_vsp = 0 + + data_file = open(data_file_path, "r") + solutions = parse_matrices(SourceFile(data_file)) + solutions = restructure_solutions(solutions, skip_to) + + for model, impfunction, negation_defined in solutions: + model, vsp_result = has_vsp_plus_model(model, impfunction, negation_defined) + print_with_timestamp(vsp_result) + num_tested += 1 + + if vsp_result.has_vsp: + print(model) + + if vsp_result.has_vsp: + num_has_vsp += 1 + + print_with_timestamp(f"Tested {num_tested} models, {num_has_vsp} of which satisfy VSP") + + if __name__ == "__main__": parser = argparse.ArgumentParser(description="VSP Checker") parser.add_argument("--verbose", action='store_true', help="Print out all parsed matrices") parser.add_argument("-i", type=str, help="Path to MaGIC ugly data file") + parser.add_argument("-c", type=int, help="Number of CPUs to use. Default: 1") + parser.add_argument("--skip-to", type=str, help="Skip until a model name is found and process from then onwards.") args = vars(parser.parse_args()) data_file_path = args.get("i") if data_file_path is None: data_file_path = input("Path to MaGIC Ugly Data File: ") - solutions = [] - with open(data_file_path, "r") as data_file: - solutions = parse_matrices(SourceFile(data_file)) - print(f"Parsed {len(solutions)} matrices") + num_cpu = args.get("c") + if num_cpu is None: + num_cpu = 1 - num_has_vsp = 0 - with multiprocessing.Pool(processes=max(cpu_count() - 2, 1)) as pool: - results = [ - pool.apply_async(has_vsp, (model, interpretation,)) - for model, interpretation in solutions - ] - - for i, result in enumerate(results): - vsp_result: VSP_Result = result.get() - print(vsp_result) - - if args['verbose'] or vsp_result.has_vsp: - model = solutions[i][0] - print(model) - - if vsp_result.has_vsp: - num_has_vsp += 1 - - print(f"Tested {len(solutions)} models, {num_has_vsp} of which satisfy VSP") + if num_cpu == 1: + single_process_runner(data_file_path, args.get("skip_to")) + else: + multi_process_runner(num_cpu, data_file_path, args.get("skip_to"))