diff --git a/vsp.py b/vsp.py index 034005f..82baa4a 100644 --- a/vsp.py +++ b/vsp.py @@ -3,7 +3,7 @@ Check to see if the model has the variable sharing property. """ from itertools import product -from typing import List, Optional, Set, Tuple +from typing import Dict, List, Optional, Set, Tuple from common import set_to_str from model import ( Model, model_closure, ModelFunction, ModelValue @@ -43,81 +43,46 @@ def has_vsp(model: Model, impfunction: ModelFunction, top = model.ordering.top() bottom = model.ordering.bottom() - # Compute I the set of tuples (x, y) where - # x -> y does not take a designiated value - I: List[Tuple[ModelValue, ModelValue]] = [] + C: Dict[ModelValue, Set[ModelValue]] = {} + U: Dict[ModelValue, Set[ModelValue]] = {} - for (x, y) in product(model.designated_values, model.designated_values): - if impfunction(x, y) not in model.designated_values: - I.append((x, y)) - - # Find the subalgebras which falsify implication - for xys in I: - - xi = xys[0] + for d in model.designated_values: + C[d] = model_closure({d,}, model.logical_operations, None) + U[d] = {y for y in model.designated_values if impfunction(d, y) in model.designated_values} + for x in model.designated_values: + Xs = C[x] + # Discard ({⊥} ∪ A', B) subalgebras - if bottom is not None and xi == bottom: + if bottom is not None and bottom in Xs: continue - + # Discard ({⊤} ∪ A', B) subalgebras when negation is defined - if top is not None and negation_defined and xi == top: + if top is not None and negation_defined and top in Xs: continue - yi = xys[1] + Ux = U[x] + for y in model.designated_values - Xs - Ux: + Ys = C[y] - # Discard (A, {⊤} ∪ B') subalgebras - if top is not None and yi == top: - continue - - # Discard (A, {⊥} ∪ B') subalgebras when negation is defined - if bottom is not None and negation_defined and yi == bottom: - continue - - # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b - if model.ordering.is_lt(xi, yi): - continue - - # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined - if negation_defined and model.ordering.is_lt(yi, xi): - continue - - # Compute the left closure of the set containing xi under all the operations - carrier_set_left: Set[ModelValue] = model_closure({xi,}, model.logical_operations, bottom) - - # Discard ({⊥} ∪ A', B) subalgebras - if bottom is not None and bottom in carrier_set_left: - continue - - # Discard ({⊤} ∪ A', B) subalgebras when negation is defined - if top is not None and negation_defined and top in carrier_set_left: - continue - - # Compute the closure of all operations - # with just the ys - carrier_set_right: Set[ModelValue] = model_closure({yi,}, model.logical_operations, top) - - # Discard (A, {⊤} ∪ B') subalgebras - if top is not None and top in carrier_set_right: - continue - - # Discard (A, {⊥} ∪ B') subalgebras when negation is defined - if bottom is not None and negation_defined and bottom in carrier_set_right: - continue - - # Discard subalgebras that intersect - if not carrier_set_left.isdisjoint(carrier_set_right): - continue - - # Check whether for all pairs in the subalgebra, - # that implication is falsified. - falsified = True - for (x2, y2) in product(carrier_set_left, carrier_set_right): - if impfunction(x2, y2) in model.designated_values: - falsified = False - break - - if falsified: - return VSP_Result(True, model.name, carrier_set_left, carrier_set_right) + # Discard (A, {⊤} ∪ B') subalgebras + if top is not None and top in Ys: + continue + + # Discard (A, {⊥} ∪ B') subalgebras when negation is defined + if bottom is not None and negation_defined and bottom in Ys: + continue + + if not Xs.isdisjoint(Ys): + continue + falsified = True + for (xi, yi) in product(Xs, Ys): + if impfunction(xi, yi) in model.designated_values: + falsified = False + break + + if falsified: + return VSP_Result(True, model.name, Xs, Ys) + return VSP_Result(False, model.name)