import gym import torch import torch.nn as nn import torch.nn.functional as F import rltorch import rltorch.network as rn import rltorch.memory as M import rltorch.env as E from rltorch.action_selector import ArgMaxSelector from tensorboardX import SummaryWriter import torch.multiprocessing as mp # ## Networks # class Value(nn.Module): def __init__(self, state_size, action_size): super(Value, self).__init__() self.state_size = state_size self.action_size = action_size self.conv1 = nn.Conv2d(4, 32, kernel_size = (8, 8), stride = (4, 4)) self.conv_norm1 = nn.LayerNorm([32, 19, 19]) self.conv2 = nn.Conv2d(32, 64, kernel_size = (4, 4), stride = (2, 2)) self.conv_norm2 = nn.LayerNorm([64, 8, 8]) self.conv3 = nn.Conv2d(64, 64, kernel_size = (3, 3), stride = (1, 1)) self.conv_norm3 = nn.LayerNorm([64, 6, 6]) self.fc1 = rn.NoisyLinear(64 * 6 * 6, 384) self.fc_norm = nn.LayerNorm(384) self.value_fc = rn.NoisyLinear(384, 384) self.value_fc_norm = nn.LayerNorm(384) self.value = rn.NoisyLinear(384, 1) self.advantage_fc = rn.NoisyLinear(384, 384) self.advantage_fc_norm = nn.LayerNorm(384) self.advantage = rn.NoisyLinear(384, action_size) def forward(self, x): x = F.relu(self.conv_norm1(self.conv1(x))) x = F.relu(self.conv_norm2(self.conv2(x))) x = F.relu(self.conv_norm3(self.conv3(x))) # Makes batch_size dimension again x = x.view(-1, 64 * 6 * 6) x = F.relu(self.fc_norm(self.fc1(x))) state_value = F.relu(self.value_fc_norm(self.value_fc(x))) state_value = self.value(state_value) advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x))) advantage = self.advantage(advantage) x = state_value + advantage - advantage.mean() # For debugging purposes... if torch.isnan(x).any().item(): print("WARNING NAN IN MODEL DETECTED") return x # ## Configuration # config = {} config['seed'] = 901 config['environment_name'] = 'PongNoFrameskip-v4' config['memory_size'] = 5000 config['total_training_episodes'] = 500 config['total_evaluation_episodes'] = 10 config['learning_rate'] = 1e-4 config['target_sync_tau'] = 1e-3 config['discount_rate'] = 0.99 config['exploration_rate'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.1, end_value = 0.01, iterations = 5000) config['replay_skip'] = 4 config['batch_size'] = 32 * (config['replay_skip'] + 1) # How many episodes between printing out the episode stats config['print_stat_n_eps'] = 1 config['disable_cuda'] = False # Prioritized vs Random Sampling # 0 - Random sampling # 1 - Only the highest prioirities config['prioritized_replay_sampling_priority'] = 0.6 # How important are the weights for the loss? # 0 - Treat all losses equally # 1 - Lower the importance of high losses # Should ideally start from 0 and move your way to 1 to prevent overfitting config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000) if __name__ == "__main__": # To not hit file descriptor memory limit torch.multiprocessing.set_sharing_strategy('file_system') # Setting up the environment rltorch.set_seed(config['seed']) print("Setting up environment...", end = " ") env = E.FrameStack(E.TorchWrap( E.ProcessFrame(E.FireResetEnv(gym.make(config['environment_name'])), resize_shape = (80, 80), crop_bounds = [34, 194, 15, 145], grayscale = True)) , 4) env.seed(config['seed']) print("Done.") state_size = env.observation_space.shape[0] action_size = env.action_space.n # Logging logger = rltorch.log.Logger() logwriter = rltorch.log.LogWriter(SummaryWriter()) # Setting up the networks device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu") net = rn.Network(Value(state_size, action_size), torch.optim.Adam, config, device = device, name = "DQN") target_net = rn.TargetNetwork(net, device = device) net.model.share_memory() target_net.model.share_memory() # Actor takes a net and uses it to produce actions from given states actor = ArgMaxSelector(net, action_size, device = device) # Memory stores experiences for later training memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority']) # Runner performs a certain number of steps in the environment runner = rltorch.mp.EnvironmentRun(env, actor, config, name = "Training", memory = memory, logwriter = logwriter) # Agent is what performs the training agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger) print("Training...") train(runner, agent, config, logger = logger, logwriter = logwriter) # For profiling... # import cProfile # cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )') # python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution... print("Training Finished.") runner.terminate() # We don't need the extra process anymore print("Evaluating...") rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation") print("Evaulations Done.") logwriter.close() # We don't need to write anything out to disk anymore