import gym import torch import torch.nn as nn import torch.nn.functional as F import rltorch import rltorch.network as rn import rltorch.memory as M import rltorch.env as E from rltorch.action_selector import StochasticSelector # from tensorboardX import SummaryWriter from copy import deepcopy from rltorch.log import Logger # ## Networks # class Value(nn.Module): def __init__(self, state_size, action_size): super(Value, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = rn.NoisyLinear(state_size, 255) self.fc_norm = nn.LayerNorm(255) self.value_fc = rn.NoisyLinear(255, 255) self.value_fc_norm = nn.LayerNorm(255) self.value = rn.NoisyLinear(255, 1) self.advantage_fc = rn.NoisyLinear(255, 255) self.advantage_fc_norm = nn.LayerNorm(255) self.advantage = rn.NoisyLinear(255, action_size) def forward(self, x): x = F.relu(self.fc_norm(self.fc1(x))) state_value = F.relu(self.value_fc_norm(self.value_fc(x))) state_value = self.value(state_value) advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x))) advantage = self.advantage(advantage) x = state_value + advantage - advantage.mean() return x class Policy(nn.Module): def __init__(self, state_size, action_size): super(Policy, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(state_size, 125) self.fc_norm = nn.LayerNorm(125) self.fc2 = nn.Linear(125, 125) self.fc2_norm = nn.LayerNorm(125) self.action_prob = nn.Linear(125, action_size) def forward(self, x): x = F.relu(self.fc_norm(self.fc1(x))) x = F.relu(self.fc2_norm(self.fc2(x))) x = F.softmax(self.action_prob(x), dim = 1) return x # ## Configuration # config = {} config['seed'] = 901 config['environment_name'] = 'Acrobot-v1' config['memory_size'] = 2000 config['total_training_episodes'] = 50 config['total_evaluation_episodes'] = 5 config['batch_size'] = 32 config['learning_rate'] = 1e-3 config['target_sync_tau'] = 1e-1 config['discount_rate'] = 0.99 config['replay_skip'] = 0 # How many episodes between printing out the episode stats config['print_stat_n_eps'] = 1 config['disable_cuda'] = False # Prioritized vs Random Sampling # 0 - Random sampling # 1 - Only the highest prioirities config['prioritized_replay_sampling_priority'] = 0.6 # How important are the weights for the loss? # 0 - Treat all losses equally # 1 - Lower the importance of high losses # Should ideally start from 0 and move your way to 1 to prevent overfitting config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000) # ## Training Loop # def train(runner, agent, config, logwriter=None): finished = False last_episode_num = 1 while not finished: runner.run(config['replay_skip'] + 1) agent.learn() if logwriter is not None: if last_episode_num < runner.episode_num: last_episode_num = runner.episode_num agent.value_net.log_named_parameters() agent.policy_net.log_named_parameters() logwriter.write(Logger) finished = runner.episode_num > config['total_training_episodes'] if __name__ == "__main__": # Setting up the environment rltorch.set_seed(config['seed']) print("Setting up environment...", end = " ") env = E.TorchWrap(gym.make(config['environment_name'])) env.seed(config['seed']) print("Done.") state_size = env.observation_space.shape[0] action_size = env.action_space.n # Logging logwriter = None # logwriter = rltorch.log.LogWriter(SummaryWriter()) # Setting up the networks device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu") config2 = deepcopy(config) config2['learning_rate'] = 0.01 policy_net = rn.ESNetwork(Policy(state_size, action_size), torch.optim.Adam, 500, None, config2, sigma=0.1, device=device, name="ES") value_net = rn.Network(Value(state_size, action_size), torch.optim.Adam, config, device=device, name="DQN") target_net = rn.TargetNetwork(value_net, device=device) # Actor takes a net and uses it to produce actions from given states actor = StochasticSelector(policy_net, action_size, device=device) # Memory stores experiences for later training memory = M.PrioritizedReplayMemory(capacity=config['memory_size'], alpha=config['prioritized_replay_sampling_priority']) # Runner performs a certain number of steps in the environment runner = rltorch.env.EnvironmentRunSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter) # Agent is what performs the training agent = rltorch.agents.QEPAgent(policy_net, value_net, memory, config, target_value_net=target_net) print("Training...") train(runner, agent, config, logwriter=logwriter) # For profiling... # import cProfile # cProfile.run('train(runner, agent, config, logwriter = logwriter )') # python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution... print("Training Finished.") print("Evaluating...") rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], name="Evaluation") print("Evaulations Done.") # logwriter.close() # We don't need to write anything out to disk anymore