import gym import torch import torch.nn as nn import torch.nn.functional as F import rltorch import rltorch.network as rn import rltorch.memory as M import rltorch.env as E from rltorch.action_selector import StochasticSelector from tensorboardX import SummaryWriter from rltorch.log import Logger # ## Networks # class Value(nn.Module): def __init__(self, state_size): super(Value, self).__init__() self.state_size = state_size self.fc1 = rn.NoisyLinear(state_size, 64) self.fc_norm = nn.LayerNorm(64) self.fc2 = rn.NoisyLinear(64, 64) self.fc2_norm = nn.LayerNorm(64) self.fc3 = rn.NoisyLinear(64, 1) def forward(self, x): x = F.relu(self.fc_norm(self.fc1(x))) x = F.relu(self.fc2_norm(self.fc2(x))) x = self.fc3(x) return x class Policy(nn.Module): def __init__(self, state_size, action_size): super(Policy, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = rn.NoisyLinear(state_size, 64) self.fc_norm = nn.LayerNorm(64) self.fc2 = rn.NoisyLinear(64, 64) self.fc2_norm = nn.LayerNorm(64) self.fc3 = rn.NoisyLinear(64, action_size) def forward(self, x): x = F.relu(self.fc_norm(self.fc1(x))) x = F.relu(self.fc2_norm(self.fc2(x))) x = F.softmax(self.fc3(x), dim = 1) return x # ## Configuration # config = {} config['seed'] = 901 config['environment_name'] = 'Acrobot-v1' config['total_training_episodes'] = 500 config['total_evaluation_episodes'] = 10 config['learning_rate'] = 1e-3 config['discount_rate'] = 0.99 # How many episodes between printing out the episode stats config['print_stat_n_eps'] = 1 config['disable_cuda'] = False # ## Training Loop # def train(runner, agent, config, logwriter = None): finished = False while not finished: runner.run() agent.learn() if logwriter is not None: agent.value_net.log_named_parameters() agent.policy_net.log_named_parameters() logwriter.write(Logger) finished = runner.episode_num > config['total_training_episodes'] if __name__ == "__main__": # Setting up the environment rltorch.set_seed(config['seed']) print("Setting up environment...", end=" ") env = E.TorchWrap(gym.make(config['environment_name'])) env.seed(config['seed']) print("Done.") state_size = env.observation_space.shape[0] action_size = env.action_space.n # Logging logwriter = rltorch.log.LogWriter(SummaryWriter()) # Setting up the networks device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu") policy_net = rn.Network(Policy(state_size, action_size), torch.optim.Adam, config, device=device, name="Policy") value_net = rn.Network(Value(state_size), torch.optim.Adam, config, device=device, name="DQN") # Memory stores experiences for later training memory = M.EpisodeMemory() # Actor takes a net and uses it to produce actions from given states actor = StochasticSelector(policy_net, action_size, memory, device=device) # Agent is what performs the training agent = rltorch.agents.PPOAgent(policy_net, value_net, memory, config) # Runner performs a certain number of steps in the environment runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter) print("Training...") train(runner, agent, config, logwriter=logwriter) # For profiling... # import cProfile # cProfile.run('train(runner, agent, config, logwriter = logwriter )') # python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution... print("Training Finished.") print("Evaluating...") rltorch.env.simulateEnvEps(env, actor, config, total_episodes=config['total_evaluation_episodes'], name="Evaluation") print("Evaulations Done.") logwriter.close() # We don't need to write anything out to disk anymore