Playing around with QEP
This commit is contained in:
		
							parent
							
								
									8683b75ad9
								
							
						
					
					
						commit
						cdfd3ab6b9
					
				
					 1 changed files with 13 additions and 6 deletions
				
			
		| 
						 | 
				
			
			@ -1,5 +1,6 @@
 | 
			
		|||
from copy import deepcopy
 | 
			
		||||
import collections
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from torch.distributions import Categorical
 | 
			
		||||
import rltorch
 | 
			
		||||
| 
						 | 
				
			
			@ -18,21 +19,27 @@ class QEPAgent:
 | 
			
		|||
        self.memory = memory
 | 
			
		||||
        self.config = deepcopy(config)
 | 
			
		||||
        self.logger = logger
 | 
			
		||||
        self.policy_skip = 10
 | 
			
		||||
        self.policy_skip = 4
 | 
			
		||||
 | 
			
		||||
    def fitness(self, policy_net, value_net, state_batch):
 | 
			
		||||
        batch_size = len(state_batch)
 | 
			
		||||
        action_probabilities = policy_net(state_batch)
 | 
			
		||||
        action_size = action_probabilities.shape[1]
 | 
			
		||||
        distributions = list(map(Categorical, action_probabilities))
 | 
			
		||||
        actions = torch.stack([d.sample() for d in distributions])
 | 
			
		||||
      
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            state_values = value_net(state_batch)
 | 
			
		||||
        obtained_values = state_values.gather(1, actions.view(len(state_batch), 1)).squeeze(1)
 | 
			
		||||
 | 
			
		||||
        # return -obtained_values.mean().item()
 | 
			
		||||
        
 | 
			
		||||
        entropy_importance = 0.01 # Entropy accounting for 1% of loss seems to work well
 | 
			
		||||
        entropy_loss = (action_probabilities * torch.log(action_probabilities)).sum(1) 
 | 
			
		||||
        return (entropy_importance * entropy_loss - (1 - entropy_importance) * obtained_values).mean().item()
 | 
			
		||||
        value_importance = 1 - entropy_importance
 | 
			
		||||
        
 | 
			
		||||
        # entropy_loss = (action_probabilities * torch.log2(action_probabilities)).sum(1) # Standard entropy loss from information theory
 | 
			
		||||
        entropy_loss = (action_probabilities - torch.tensor(1 / action_size).repeat(len(state_batch), action_size)).abs().sum(1)
 | 
			
		||||
        
 | 
			
		||||
        return (entropy_importance * entropy_loss - value_importance * obtained_values).mean().item()
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
    def learn(self, logger = None):
 | 
			
		||||
| 
						 | 
				
			
			@ -75,7 +82,7 @@ class QEPAgent:
 | 
			
		|||
            best_next_state_value = torch.zeros(self.config['batch_size'], device = self.value_net.device)
 | 
			
		||||
            best_next_state_value[not_done_batch] = next_state_values[not_done_batch].gather(1, next_best_action.view((not_done_size, 1))).squeeze(1)
 | 
			
		||||
            
 | 
			
		||||
        expected_values = (reward_batch + (self.config['discount_rate'] * best_next_state_value)).unsqueeze(1)
 | 
			
		||||
        expected_values = (reward_batch.float() + (self.config['discount_rate'] * best_next_state_value)).unsqueeze(1)
 | 
			
		||||
 | 
			
		||||
        if (isinstance(self.memory, M.PrioritizedReplayMemory)):
 | 
			
		||||
            value_loss = (torch.as_tensor(importance_weights, device = self.value_net.device) * ((obtained_values - expected_values)**2).squeeze(1)).mean()
 | 
			
		||||
| 
						 | 
				
			
			@ -104,7 +111,7 @@ class QEPAgent:
 | 
			
		|||
        if self.policy_skip > 0:
 | 
			
		||||
          self.policy_skip -= 1
 | 
			
		||||
          return
 | 
			
		||||
        self.policy_skip = 10
 | 
			
		||||
        self.policy_skip = 4
 | 
			
		||||
        if self.target_value_net is not None:
 | 
			
		||||
          self.policy_net.calc_gradients(self.target_value_net, state_batch)
 | 
			
		||||
        else:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue