Made Logger global

This commit is contained in:
Brandon Rozek 2020-04-14 15:24:48 -04:00
parent 1f7c6f10ab
commit c6172f309d
21 changed files with 513 additions and 527 deletions

View file

@ -8,6 +8,7 @@ import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
from rltorch.log import Logger
#
## Networks
@ -68,65 +69,55 @@ config['disable_cuda'] = False
#
## Training Loop
#
def train(runner, agent, config, logger = None, logwriter = None):
def train(runner, agent, config, logwriter=None):
finished = False
while not finished:
runner.run()
agent.learn()
if logwriter is not None:
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end=" ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
policy_net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device = device, name = "Policy")
value_net = rn.Network(Value(state_size),
torch.optim.Adam, config, device = device, name = "DQN")
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, memory, device = device)
# Agent is what performs the training
agent = rltorch.agents.A2CSingleAgent(policy_net, value_net, memory, config, logger = logger)
# Runner performs one episode in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
policy_net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device=device, name="Policy")
value_net = rn.Network(Value(state_size),
torch.optim.Adam, config, device=device, name="DQN")
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, memory, device = device)
# Agent is what performs the training
agent = rltorch.agents.A2CSingleAgent(policy_net, value_net, memory, config)
# Runner performs one episode in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore

View file

@ -9,29 +9,28 @@ import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
from rltorch.log import Logger
#
## Networks
#
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
self.action_prob = nn.Linear(125, action_size)
self.action_prob = nn.Linear(125, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
#
## Configuration
@ -50,75 +49,67 @@ config['disable_cuda'] = False
#
## Training Loop
#
def train(runner, net, config, logger = None, logwriter = None):
finished = False
while not finished:
runner.run()
net.calc_gradients()
net.step()
if logwriter is not None:
net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
def train(runner, net, config, logwriter=None):
finished = False
while not finished:
runner.run()
net.calc_gradients()
net.step()
if logwriter is not None:
net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
#
## Loss function
#
def fitness(model):
env = gym.make("Acrobot-v1")
state = torch.from_numpy(env.reset()).float().unsqueeze(0)
total_reward = 0
done = False
while not done:
action_probabilities = model(state)
distribution = Categorical(action_probabilities)
action = distribution.sample().item()
next_state, reward, done, _ = env.step(action)
total_reward += reward
state = torch.from_numpy(next_state).float().unsqueeze(0)
return -total_reward
env = gym.make("Acrobot-v1")
state = torch.from_numpy(env.reset()).float().unsqueeze(0)
total_reward = 0
done = False
while not done:
action_probabilities = model(state)
distribution = Categorical(action_probabilities)
action = distribution.sample().item()
next_state, reward, done, _ = env.step(action)
total_reward += reward
state = torch.from_numpy(next_state).float().unsqueeze(0)
return -total_reward
if __name__ == "__main__":
# Hide internal gym warnings
gym.logger.set_level(40)
# Hide internal gym warnings
gym.logger.set_level(40)
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end=" ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 100, fitness, config, device = device, name = "ES", logger = logger)
# Logging
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 100, fitness, config, device=device, name="ES")
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(net, action_size, device=device)
# Runner performs an episode of the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name="Training", logwriter=logwriter)
print("Training...")
train(runner, net, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes=config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(net, action_size, device = device)
# Runner performs an episode of the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", logwriter = logwriter)
print("Training...")
train(runner, net, config, logger = logger, logwriter = logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore
logwriter.close() # We don't need to write anything out to disk anymore

View file

@ -8,48 +8,49 @@ import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
from rltorch.log import Logger
#
## Networks
#
class Value(nn.Module):
def __init__(self, state_size):
super(Value, self).__init__()
self.state_size = state_size
def __init__(self, state_size):
super(Value, self).__init__()
self.state_size = state_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, 1)
self.fc3 = rn.NoisyLinear(64, 1)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = self.fc3(x)
return x
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = self.fc3(x)
return x
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, action_size)
self.fc3 = rn.NoisyLinear(64, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.fc3(x), dim = 1)
return x
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.fc3(x), dim = 1)
return x
#
## Configuration
@ -68,64 +69,63 @@ config['disable_cuda'] = False
#
## Training Loop
#
def train(runner, agent, config, logger = None, logwriter = None):
def train(runner, agent, config, logwriter = None):
finished = False
while not finished:
runner.run()
agent.learn()
if logwriter is not None:
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end=" ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Logging
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
policy_net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device = device, name = "Policy")
value_net = rn.Network(Value(state_size),
torch.optim.Adam, config, device = device, name = "DQN")
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
policy_net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device=device, name="Policy")
value_net = rn.Network(Value(state_size),
torch.optim.Adam, config, device=device, name="DQN")
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, memory, device = device)
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, memory, device=device)
# Agent is what performs the training
agent = rltorch.agents.PPOAgent(policy_net, value_net, memory, config, logger = logger)
# Agent is what performs the training
agent = rltorch.agents.PPOAgent(policy_net, value_net, memory, config)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes=config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore
logwriter.close() # We don't need to write anything out to disk anymore

View file

@ -7,61 +7,62 @@ import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
# from tensorboardX import SummaryWriter
from copy import deepcopy
from rltorch.log import Logger
#
## Networks
#
class Value(nn.Module):
def __init__(self, state_size, action_size):
super(Value, self).__init__()
self.state_size = state_size
self.action_size = action_size
def __init__(self, state_size, action_size):
super(Value, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = rn.NoisyLinear(state_size, 255)
self.fc_norm = nn.LayerNorm(255)
self.fc1 = rn.NoisyLinear(state_size, 255)
self.fc_norm = nn.LayerNorm(255)
self.value_fc = rn.NoisyLinear(255, 255)
self.value_fc_norm = nn.LayerNorm(255)
self.value = rn.NoisyLinear(255, 1)
self.advantage_fc = rn.NoisyLinear(255, 255)
self.advantage_fc_norm = nn.LayerNorm(255)
self.advantage = rn.NoisyLinear(255, action_size)
self.value_fc = rn.NoisyLinear(255, 255)
self.value_fc_norm = nn.LayerNorm(255)
self.value = rn.NoisyLinear(255, 1)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
self.advantage_fc = rn.NoisyLinear(255, 255)
self.advantage_fc_norm = nn.LayerNorm(255)
self.advantage = rn.NoisyLinear(255, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
state_value = self.value(state_value)
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
state_value = self.value(state_value)
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
advantage = self.advantage(advantage)
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
advantage = self.advantage(advantage)
x = state_value + advantage - advantage.mean()
return x
x = state_value + advantage - advantage.mean()
return x
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
self.action_prob = nn.Linear(125, action_size)
self.action_prob = nn.Linear(125, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
#
## Configuration
@ -94,70 +95,70 @@ config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialSc
#
## Training Loop
#
def train(runner, agent, config, logger = None, logwriter = None):
def train(runner, agent, config, logwriter=None):
finished = False
last_episode_num = 1
while not finished:
runner.run(config['replay_skip'] + 1)
agent.learn()
if logwriter is not None:
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Logging
logwriter = None
# logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
config2 = deepcopy(config)
config2['learning_rate'] = 0.01
policy_net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 500, None, config2, sigma = 0.1, device = device, name = "ES", logger = logger)
value_net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device = device, name = "DQN", logger = logger)
target_net = rn.TargetNetwork(value_net, device = device)
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
config2 = deepcopy(config)
config2['learning_rate'] = 0.01
policy_net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 500, None, config2, sigma=0.1, device=device, name="ES")
value_net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device=device, name="DQN")
target_net = rn.TargetNetwork(value_net, device=device)
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, device = device)
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, device=device)
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity=config['memory_size'], alpha=config['prioritized_replay_sampling_priority'])
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter)
# Agent is what performs the training
agent = rltorch.agents.QEPAgent(policy_net, value_net, memory, config, target_value_net = target_net, logger = logger)
# Agent is what performs the training
agent = rltorch.agents.QEPAgent(policy_net, value_net, memory, config, target_value_net=target_net)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore
# logwriter.close() # We don't need to write anything out to disk anymore

View file

@ -7,30 +7,30 @@ import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
from rltorch.log import Logger
#
## Networks
#
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, action_size)
self.fc3 = rn.NoisyLinear(64, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.fc3(x), dim = 1)
return x
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.fc3(x), dim=1)
return x
#
## Configuration
@ -49,65 +49,65 @@ config['disable_cuda'] = False
#
## Training Loop
#
def train(runner, agent, config, logger = None, logwriter = None):
finished = False
while not finished:
runner.run()
agent.learn()
# When the episode number changes, log network paramters
if logwriter is not None:
agent.net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
def train(runner, agent, config, logwriter=None):
finished = False
while not finished:
runner.run()
agent.learn()
# When the episode number changes, log network paramters
if logwriter is not None:
agent.net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end=" ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Logging
logwriter = None
# logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device = device, name = "DQN")
target_net = rn.TargetNetwork(net, device = device)
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device=device, name="DQN")
target_net = rn.TargetNetwork(net, device=device)
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(net, action_size, memory, device = device)
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(net, action_size, memory, device=device)
# Agent is what performs the training
agent = rltorch.agents.REINFORCEAgent(net, memory, config, target_net = target_net, logger = logger)
# Agent is what performs the training
agent = rltorch.agents.REINFORCEAgent(net, memory, config, target_net=target_net)
# Runner performs one episode in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
# Runner performs one episode in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes=config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore
# logwriter.close() # We don't need to write anything out to disk anymore

View file

@ -7,39 +7,39 @@ import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import ArgMaxSelector
from tensorboardX import SummaryWriter
from rltorch.log import Logger
#
## Networks
#
class Value(nn.Module):
def __init__(self, state_size, action_size):
super(Value, self).__init__()
self.state_size = state_size
self.action_size = action_size
def __init__(self, state_size, action_size):
super(Value, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = rn.NoisyLinear(state_size, 255)
self.fc_norm = nn.LayerNorm(255)
self.fc1 = rn.NoisyLinear(state_size, 255)
self.fc_norm = nn.LayerNorm(255)
self.value_fc = rn.NoisyLinear(255, 255)
self.value_fc_norm = nn.LayerNorm(255)
self.value = rn.NoisyLinear(255, 1)
self.value_fc = rn.NoisyLinear(255, 255)
self.value_fc_norm = nn.LayerNorm(255)
self.value = rn.NoisyLinear(255, 1)
self.advantage_fc = rn.NoisyLinear(255, 255)
self.advantage_fc_norm = nn.LayerNorm(255)
self.advantage = rn.NoisyLinear(255, action_size)
self.advantage_fc = rn.NoisyLinear(255, 255)
self.advantage_fc_norm = nn.LayerNorm(255)
self.advantage = rn.NoisyLinear(255, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
state_value = self.value(state_value)
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
state_value = self.value(state_value)
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
advantage = self.advantage(advantage)
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
advantage = self.advantage(advantage)
x = state_value + advantage - advantage.mean()
return x
x = state_value + advantage - advantage.mean()
return x
#
## Configuration
@ -71,7 +71,7 @@ config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialSc
#
## Training Loop
#
def train(runner, agent, config, logger = None, logwriter = None):
def train(runner, agent, config, logwriter=None):
finished = False
last_episode_num = 1
while not finished:
@ -79,56 +79,56 @@ def train(runner, agent, config, logger = None, logwriter = None):
agent.learn()
if logwriter is not None:
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.net.log_named_parameters()
logwriter.write(logger)
last_episode_num = runner.episode_num
agent.net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end=" ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Logging
logwriter = None
# logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device = device, name = "DQN", logger = logger)
target_net = rn.TargetNetwork(net, device = device)
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device=device, name="DQN")
target_net = rn.TargetNetwork(net, device=device)
# Actor takes a net and uses it to produce actions from given states
actor = ArgMaxSelector(net, action_size, device = device)
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
# Actor takes a net and uses it to produce actions from given states
actor = ArgMaxSelector(net, action_size, device=device)
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity=config['memory_size'], alpha=config['prioritized_replay_sampling_priority'])
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter)
# Agent is what performs the training
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
# Agent is what performs the training
agent = rltorch.agents.DQNAgent(net, memory, config, target_net=target_net)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], name = "Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore
logwriter.close() # We don't need to write anything out to disk anymore

View file

@ -9,58 +9,59 @@ import rltorch.env as E
from rltorch.action_selector import ArgMaxSelector
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
from rltorch.log import Logger
#
## Networks
#
class Value(nn.Module):
def __init__(self, state_size, action_size):
super(Value, self).__init__()
self.state_size = state_size
self.action_size = action_size
def __init__(self, state_size, action_size):
super(Value, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.conv1 = nn.Conv2d(4, 32, kernel_size = (8, 8), stride = (4, 4))
self.conv_norm1 = nn.LayerNorm([32, 19, 19])
self.conv2 = nn.Conv2d(32, 64, kernel_size = (4, 4), stride = (2, 2))
self.conv_norm2 = nn.LayerNorm([64, 8, 8])
self.conv3 = nn.Conv2d(64, 64, kernel_size = (3, 3), stride = (1, 1))
self.conv_norm3 = nn.LayerNorm([64, 6, 6])
self.conv1 = nn.Conv2d(4, 32, kernel_size=(8, 8), stride=(4, 4))
self.conv_norm1 = nn.LayerNorm([32, 19, 19])
self.conv2 = nn.Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
self.conv_norm2 = nn.LayerNorm([64, 8, 8])
self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
self.conv_norm3 = nn.LayerNorm([64, 6, 6])
self.fc1 = rn.NoisyLinear(64 * 6 * 6, 384)
self.fc_norm = nn.LayerNorm(384)
self.fc1 = rn.NoisyLinear(64 * 6 * 6, 384)
self.fc_norm = nn.LayerNorm(384)
self.value_fc = rn.NoisyLinear(384, 384)
self.value_fc_norm = nn.LayerNorm(384)
self.value = rn.NoisyLinear(384, 1)
self.value_fc = rn.NoisyLinear(384, 384)
self.value_fc_norm = nn.LayerNorm(384)
self.value = rn.NoisyLinear(384, 1)
self.advantage_fc = rn.NoisyLinear(384, 384)
self.advantage_fc_norm = nn.LayerNorm(384)
self.advantage = rn.NoisyLinear(384, action_size)
self.advantage_fc = rn.NoisyLinear(384, 384)
self.advantage_fc_norm = nn.LayerNorm(384)
self.advantage = rn.NoisyLinear(384, action_size)
def forward(self, x):
x = F.relu(self.conv_norm1(self.conv1(x)))
x = F.relu(self.conv_norm2(self.conv2(x)))
x = F.relu(self.conv_norm3(self.conv3(x)))
def forward(self, x):
x = F.relu(self.conv_norm1(self.conv1(x)))
x = F.relu(self.conv_norm2(self.conv2(x)))
x = F.relu(self.conv_norm3(self.conv3(x)))
# Makes batch_size dimension again
x = x.view(-1, 64 * 6 * 6)
x = F.relu(self.fc_norm(self.fc1(x)))
# Makes batch_size dimension again
x = x.view(-1, 64 * 6 * 6)
x = F.relu(self.fc_norm(self.fc1(x)))
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
state_value = self.value(state_value)
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
state_value = self.value(state_value)
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
advantage = self.advantage(advantage)
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
advantage = self.advantage(advantage)
x = state_value + advantage - advantage.mean()
x = state_value + advantage - advantage.mean()
# For debugging purposes...
if torch.isnan(x).any().item():
print("WARNING NAN IN MODEL DETECTED")
return x
# For debugging purposes...
if torch.isnan(x).any().item():
print("WARNING NAN IN MODEL DETECTED")
return x
#
## Configuration
#
@ -89,59 +90,73 @@ config['prioritized_replay_sampling_priority'] = 0.6
# Should ideally start from 0 and move your way to 1 to prevent overfitting
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
#
## Training Loop
#
def train(runner, agent, config, logwriter = None):
finished = False
while not finished:
runner.run()
agent.learn()
if logwriter is not None:
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
# To not hit file descriptor memory limit
torch.multiprocessing.set_sharing_strategy('file_system')
# To not hit file descriptor memory limit
torch.multiprocessing.set_sharing_strategy('file_system')
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.FrameStack(E.TorchWrap(
E.ProcessFrame(E.FireResetEnv(gym.make(config['environment_name'])),
resize_shape = (80, 80), crop_bounds = [34, 194, 15, 145], grayscale = True))
, 4)
env.seed(config['seed'])
print("Done.")
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.FrameStack(E.TorchWrap(
E.ProcessFrame(E.FireResetEnv(gym.make(config['environment_name'])),
resize_shape=(80, 80), crop_bounds=[34, 194, 15, 145], grayscale=True))
, 4)
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Logging
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device = device, name = "DQN")
target_net = rn.TargetNetwork(net, device = device)
net.model.share_memory()
target_net.model.share_memory()
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device=device, name="DQN")
target_net = rn.TargetNetwork(net, device=device)
net.model.share_memory()
target_net.model.share_memory()
# Actor takes a net and uses it to produce actions from given states
actor = ArgMaxSelector(net, action_size, device = device)
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
# Actor takes a net and uses it to produce actions from given states
actor = ArgMaxSelector(net, action_size, device=device)
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity=config['memory_size'], alpha=config['prioritized_replay_sampling_priority'])
# Runner performs a certain number of steps in the environment
runner = rltorch.mp.EnvironmentRun(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
# Runner performs a certain number of steps in the environment
runner = rltorch.mp.EnvironmentRun(env, actor, config, name="Training", memory=memory, logwriter=logwriter)
# Agent is what performs the training
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
# Agent is what performs the training
agent = rltorch.agents.DQNAgent(net, memory, config, target_net=target_net)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
runner.terminate() # We don't need the extra process anymore
print("Training Finished.")
runner.terminate() # We don't need the extra process anymore
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes=config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore
logwriter.close() # We don't need to write anything out to disk anymore