Merge branch 'master' of github.com:Brandon-Rozek/rltorch
This commit is contained in:
commit
a667b3734b
29 changed files with 536 additions and 78 deletions
6
.gitignore
vendored
6
.gitignore
vendored
|
@ -2,3 +2,9 @@ __pycache__/
|
|||
*.py[cod]
|
||||
rlenv/
|
||||
runs/
|
||||
*.tox
|
||||
*.coverage
|
||||
.vscode/
|
||||
docs/build
|
||||
.mypy_cache/
|
||||
*egg-info*
|
||||
|
|
20
docs/Makefile
Normal file
20
docs/Makefile
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
35
docs/make.bat
Normal file
35
docs/make.bat
Normal file
|
@ -0,0 +1,35 @@
|
|||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=source
|
||||
set BUILDDIR=build
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.http://sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||
|
||||
:end
|
||||
popd
|
4
docs/source/action_selector.rst
Normal file
4
docs/source/action_selector.rst
Normal file
|
@ -0,0 +1,4 @@
|
|||
Action Selector
|
||||
===============
|
||||
.. automodule:: rltorch.action_selector
|
||||
:members:
|
4
docs/source/agents.rst
Normal file
4
docs/source/agents.rst
Normal file
|
@ -0,0 +1,4 @@
|
|||
Agents
|
||||
======
|
||||
.. automodule:: rltorch.agents
|
||||
:members:
|
58
docs/source/conf.py
Normal file
58
docs/source/conf.py
Normal file
|
@ -0,0 +1,58 @@
|
|||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# This file only contains a selection of the most common options. For a full
|
||||
# list see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'RLTorch'
|
||||
copyright = '2020, Brandon Rozek'
|
||||
author = 'Brandon Rozek'
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
release = '0.1.0'
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
"sphinx.ext.autodoc",
|
||||
'sphinx.ext.autosummary',
|
||||
'sphinx.ext.napoleon',
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinx.ext.mathjax",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = []
|
||||
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = 'alabaster'
|
||||
|
||||
|
||||
html_sidebars = {
|
||||
'**': [
|
||||
'about.html',
|
||||
'navigation.html',
|
||||
'searchbox.html',
|
||||
]
|
||||
}
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
5
docs/source/env.rst
Normal file
5
docs/source/env.rst
Normal file
|
@ -0,0 +1,5 @@
|
|||
Environment Utilities
|
||||
=====================
|
||||
.. automodule:: rltorch.env
|
||||
:members:
|
||||
|
15
docs/source/index.rst
Normal file
15
docs/source/index.rst
Normal file
|
@ -0,0 +1,15 @@
|
|||
Welcome to RLTorch's documentation!
|
||||
===================================
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
|
||||
action_selector
|
||||
agents
|
||||
env
|
||||
memory
|
||||
mp
|
||||
network
|
||||
scheduler
|
||||
log
|
||||
seed
|
4
docs/source/log.rst
Normal file
4
docs/source/log.rst
Normal file
|
@ -0,0 +1,4 @@
|
|||
Logging
|
||||
=======
|
||||
.. automodule:: rltorch.log
|
||||
:members:
|
8
docs/source/memory.rst
Normal file
8
docs/source/memory.rst
Normal file
|
@ -0,0 +1,8 @@
|
|||
Memory Structures
|
||||
=================
|
||||
.. autoclass:: rltorch.memory.ReplayMemory
|
||||
:members:
|
||||
.. autoclass:: rltorch.memory.PrioritizedReplayMemory
|
||||
:members:
|
||||
.. autoclass:: rltorch.memory.EpisodeMemory
|
||||
:members:
|
4
docs/source/mp.rst
Normal file
4
docs/source/mp.rst
Normal file
|
@ -0,0 +1,4 @@
|
|||
Multiprocessing
|
||||
===============
|
||||
.. automodule:: rltorch.mp
|
||||
:members:
|
10
docs/source/network.rst
Normal file
10
docs/source/network.rst
Normal file
|
@ -0,0 +1,10 @@
|
|||
Neural Networks
|
||||
===============
|
||||
.. autoclass:: rltorch.network.Network
|
||||
:members:
|
||||
.. autoclass:: rltorch.network.TargetNetwork
|
||||
:members:
|
||||
.. autoclass:: rltorch.network.ESNetwork
|
||||
:members:
|
||||
.. autoclass:: rltorch.network.NoisyLinear
|
||||
:members:
|
6
docs/source/scheduler.rst
Normal file
6
docs/source/scheduler.rst
Normal file
|
@ -0,0 +1,6 @@
|
|||
Hyperparameter Scheduling
|
||||
=========================
|
||||
.. autoclass:: rltorch.scheduler.LinearScheduler
|
||||
:members:
|
||||
.. autoclass:: rltorch.scheduler.ExponentialScheduler
|
||||
:members:
|
4
docs/source/seed.rst
Normal file
4
docs/source/seed.rst
Normal file
|
@ -0,0 +1,4 @@
|
|||
Seeding
|
||||
=======
|
||||
.. automodule:: rltorch.seed
|
||||
:members:
|
|
@ -1,32 +0,0 @@
|
|||
absl-py==0.7.0
|
||||
astor==0.7.1
|
||||
atari-py==0.1.7
|
||||
certifi==2018.11.29
|
||||
chardet==3.0.4
|
||||
future==0.17.1
|
||||
gast==0.2.2
|
||||
grpcio==1.18.0
|
||||
gym==0.10.11
|
||||
h5py==2.9.0
|
||||
idna==2.8
|
||||
Keras-Applications==1.0.7
|
||||
Keras-Preprocessing==1.0.8
|
||||
Markdown==3.0.1
|
||||
numpy==1.16.0
|
||||
opencv-python==4.0.0.21
|
||||
Pillow==5.4.1
|
||||
pkg-resources==0.0.0
|
||||
protobuf==3.6.1
|
||||
pyglet==1.3.2
|
||||
PyOpenGL==3.1.0
|
||||
requests==2.21.0
|
||||
scipy==1.2.0
|
||||
six==1.12.0
|
||||
tensorboard==1.12.2
|
||||
tensorboardX==1.6
|
||||
tensorflow==1.12.0
|
||||
termcolor==1.1.0
|
||||
torch==1.0.0
|
||||
urllib3==1.24.1
|
||||
Werkzeug==0.14.1
|
||||
numba==0.42.1
|
|
@ -3,6 +3,13 @@ import numpy as np
|
|||
import torch
|
||||
|
||||
class Logger:
|
||||
"""
|
||||
Keeps track of lists of items seperated by tags.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Logger is a dictionary of lists.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.log = {}
|
||||
def append(self, tag, value):
|
||||
|
@ -26,26 +33,22 @@ class Logger:
|
|||
def __reversed__(self):
|
||||
return reversed(self.log)
|
||||
|
||||
# Workaround since we can't use SummaryWriter in a different process
|
||||
# class LogWriter:
|
||||
# def __init__(self, logger, writer):
|
||||
# self.logger = logger
|
||||
# self.writer = writer
|
||||
# self.steps = Counter()
|
||||
# def write(self):
|
||||
# for key in self.logger.keys():
|
||||
# for value in self.logger[key]:
|
||||
# self.steps[key] += 1
|
||||
# if isinstance(value, int) or isinstance(value, float):
|
||||
# self.writer.add_scalar(key, value, self.steps[key])
|
||||
# if isinstance(value, np.ndarray) or isinstance(value, torch.Tensor):
|
||||
# self.writer.add_histogram(key, value, self.steps[key])
|
||||
# self.logger.log = {}
|
||||
# def close(self):
|
||||
# self.writer.close()
|
||||
|
||||
|
||||
class LogWriter:
|
||||
"""
|
||||
Takes a logger and writes it to a writter.
|
||||
While keeping track of the number of times it
|
||||
a certain tag.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Used to keep track of scalars and histograms in
|
||||
Tensorboard.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
writer
|
||||
The tensorboard writer.
|
||||
"""
|
||||
def __init__(self, writer):
|
||||
self.writer = writer
|
||||
self.steps = Counter()
|
||||
|
|
|
@ -5,22 +5,43 @@ Transition = namedtuple('Transition',
|
|||
('state', 'action', 'reward', 'next_state', 'done'))
|
||||
|
||||
class EpisodeMemory(object):
|
||||
"""
|
||||
Memory structure that stores an entire episode and
|
||||
the observation's associated log-based probabilities.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.memory = []
|
||||
self.log_probs = []
|
||||
|
||||
def append(self, *args):
|
||||
"""Saves a transition."""
|
||||
"""
|
||||
Adds a transition to the memory.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*args
|
||||
The state, action, reward, next_state, done tuple
|
||||
"""
|
||||
self.memory.append(Transition(*args))
|
||||
|
||||
def append_log_probs(self, logprob):
|
||||
"""
|
||||
Adds a log-based probability to the observation.
|
||||
"""
|
||||
self.log_probs.append(logprob)
|
||||
|
||||
def clear(self):
|
||||
"""
|
||||
Clears the transitions and log-based probabilities.
|
||||
"""
|
||||
self.memory.clear()
|
||||
self.log_probs.clear()
|
||||
|
||||
def recall(self):
|
||||
"""
|
||||
Return a list of the transitions with their
|
||||
associated log-based probabilities.
|
||||
"""
|
||||
if len(self.memory) != len(self.log_probs):
|
||||
raise ValueError("Memory and recorded log probabilities must be the same length.")
|
||||
return list(zip(*tuple(zip(*self.memory)), self.log_probs))
|
||||
|
|
|
@ -147,7 +147,9 @@ class MinSegmentTree(SegmentTree):
|
|||
|
||||
class PrioritizedReplayMemory(ReplayMemory):
|
||||
def __init__(self, capacity, alpha):
|
||||
"""Create Prioritized Replay buffer.
|
||||
"""
|
||||
Create Prioritized Replay buffer.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
capacity: int
|
||||
|
@ -156,9 +158,6 @@ class PrioritizedReplayMemory(ReplayMemory):
|
|||
alpha: float
|
||||
how much prioritization is used
|
||||
(0 - no prioritization, 1 - full prioritization)
|
||||
See Also
|
||||
--------
|
||||
ReplayBuffer.__init__
|
||||
"""
|
||||
super(PrioritizedReplayMemory, self).__init__(capacity)
|
||||
assert alpha >= 0
|
||||
|
@ -173,7 +172,14 @@ class PrioritizedReplayMemory(ReplayMemory):
|
|||
self._max_priority = 1.0
|
||||
|
||||
def append(self, *args, **kwargs):
|
||||
"""See ReplayBuffer.store_effect"""
|
||||
"""
|
||||
Adds a transition to the buffer and add an initial prioritization.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*args
|
||||
The state, action, reward, next_state, done tuple
|
||||
"""
|
||||
idx = self.position
|
||||
super().append(*args, **kwargs)
|
||||
self._it_sum[idx] = self._max_priority ** self._alpha
|
||||
|
@ -191,10 +197,11 @@ class PrioritizedReplayMemory(ReplayMemory):
|
|||
return res
|
||||
|
||||
def sample(self, batch_size, beta):
|
||||
"""Sample a batch of experiences.
|
||||
compared to ReplayBuffer.sample
|
||||
it also returns importance weights and idxes
|
||||
"""
|
||||
Sample a batch of experiences.
|
||||
while returning importance weights and idxes
|
||||
of sampled experiences.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
batch_size: int
|
||||
|
@ -202,6 +209,7 @@ class PrioritizedReplayMemory(ReplayMemory):
|
|||
beta: float
|
||||
To what degree to use importance weights
|
||||
(0 - no corrections, 1 - full correction)
|
||||
|
||||
Returns
|
||||
-------
|
||||
weights: np.array
|
||||
|
@ -232,6 +240,32 @@ class PrioritizedReplayMemory(ReplayMemory):
|
|||
return batch
|
||||
|
||||
def sample_n_steps(self, batch_size, steps, beta):
|
||||
r"""
|
||||
Sample a batch of sequential experiences.
|
||||
while returning importance weights and idxes
|
||||
of sampled experiences.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
batch_size: int
|
||||
How many transitions to sample.
|
||||
beta: float
|
||||
To what degree to use importance weights
|
||||
(0 - no corrections, 1 - full correction)
|
||||
|
||||
Notes
|
||||
-----
|
||||
The number of batches sampled is :math:`\lfloor\frac{batch\_size}{steps}\rfloor`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
weights: np.array
|
||||
Array of shape (batch_size,) and dtype np.float32
|
||||
denoting importance weight of each sampled transition
|
||||
idxes: np.array
|
||||
Array of shape (batch_size,) and dtype np.int32
|
||||
idexes in buffer of sampled experiences
|
||||
"""
|
||||
assert beta > 0
|
||||
|
||||
sample_size = batch_size // steps
|
||||
|
@ -262,9 +296,11 @@ class PrioritizedReplayMemory(ReplayMemory):
|
|||
|
||||
@jit(forceobj = True)
|
||||
def update_priorities(self, idxes, priorities):
|
||||
"""Update priorities of sampled transitions.
|
||||
"""
|
||||
Update priorities of sampled transitions.
|
||||
sets priority of transition at index idxes[i] in buffer
|
||||
to priorities[i].
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idxes: [int]
|
||||
|
|
|
@ -4,21 +4,38 @@ import torch
|
|||
Transition = namedtuple('Transition',
|
||||
('state', 'action', 'reward', 'next_state', 'done'))
|
||||
|
||||
# Implements a Ring Buffer
|
||||
class ReplayMemory(object):
|
||||
"""
|
||||
Creates a ring buffer of a fixed size.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
capacity : int
|
||||
The maximum size of the buffer
|
||||
"""
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.memory = []
|
||||
self.position = 0
|
||||
|
||||
def append(self, *args):
|
||||
"""Saves a transition."""
|
||||
"""
|
||||
Adds a transition to the buffer.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
*args
|
||||
The state, action, reward, next_state, done tuple
|
||||
"""
|
||||
if len(self.memory) < self.capacity:
|
||||
self.memory.append(None)
|
||||
self.memory[self.position] = Transition(*args)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def clear(self):
|
||||
"""
|
||||
Clears the buffer.
|
||||
"""
|
||||
self.memory.clear()
|
||||
self.position = 0
|
||||
|
||||
|
@ -37,10 +54,35 @@ class ReplayMemory(object):
|
|||
|
||||
|
||||
def sample(self, batch_size):
|
||||
"""
|
||||
Returns a random sample from the buffer.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
batch_size : int
|
||||
The number of observations to sample.
|
||||
"""
|
||||
return random.sample(self.memory, batch_size)
|
||||
|
||||
def sample_n_steps(self, batch_size, steps):
|
||||
idxes = random.sample(range(len(self.memory) - steps), batch_size // steps)
|
||||
r"""
|
||||
Returns a random sample of sequential batches of size steps.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The number of batches sampled is :math:`\lfloor\frac{batch\_size}{steps}\rfloor`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
batch_size : int
|
||||
The total number of observations to sample.
|
||||
steps : int
|
||||
The number of observations after the one selected to sample.
|
||||
"""
|
||||
idxes = random.sample(
|
||||
range(len(self.memory) - steps),
|
||||
batch_size // steps
|
||||
)
|
||||
step_idxes = []
|
||||
for i in idxes:
|
||||
step_idxes += range(i, i + steps)
|
||||
|
@ -56,10 +98,10 @@ class ReplayMemory(object):
|
|||
return value in self.memory
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.memory[index]
|
||||
return self.memory[index % self.capacity]
|
||||
|
||||
def __setitem__(self, index, value):
|
||||
self.memory[index] = value
|
||||
self.memory[index % self.capacity] = value
|
||||
|
||||
def __reversed__(self):
|
||||
return reversed(self.memory)
|
||||
|
|
|
@ -7,9 +7,36 @@ from copy import deepcopy
|
|||
# What if we want to sometimes do gradient descent as well?
|
||||
class ESNetwork(Network):
|
||||
"""
|
||||
Network that functions from the paper Evolutionary Strategies (https://arxiv.org/abs/1703.03864)
|
||||
fitness_fun := model, *args -> fitness_value (float)
|
||||
We wish to find a model that maximizes the fitness function
|
||||
Uses evolutionary tecniques to optimize a neural network.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Derived from the paper
|
||||
Evolutionary Strategies
|
||||
(https://arxiv.org/abs/1703.03864)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model : nn.Module
|
||||
A PyTorch nn.Module.
|
||||
optimizer
|
||||
A PyTorch opimtizer from torch.optim.
|
||||
population_size : int
|
||||
The number of networks to evaluate each iteration.
|
||||
fitness_fn : function
|
||||
Function that evaluates a network and returns a higher
|
||||
number for better performing networks.
|
||||
sigma : number
|
||||
The standard deviation of the guassian noise added to
|
||||
the parameters when creating the population.
|
||||
config : dict
|
||||
A dictionary of configuration items.
|
||||
device
|
||||
A device to send the weights to.
|
||||
logger
|
||||
Keeps track of historical weights
|
||||
name
|
||||
For use in logger to differentiate in analysis.
|
||||
"""
|
||||
def __init__(self, model, optimizer, population_size, fitness_fn, config, sigma = 0.05, device = None, logger = None, name = ""):
|
||||
super(ESNetwork, self).__init__(model, optimizer, config, device, logger, name)
|
||||
|
@ -18,9 +45,15 @@ class ESNetwork(Network):
|
|||
self.sigma = sigma
|
||||
assert self.sigma > 0
|
||||
|
||||
# We're not going to be calculating gradients in the traditional way
|
||||
# So there's no need to waste computation time keeping track
|
||||
def __call__(self, *args):
|
||||
"""
|
||||
Notes
|
||||
-----
|
||||
Since gradients aren't going to be computed in the
|
||||
traditional fashion, there is no need to keep
|
||||
track of the computations performed on the
|
||||
tensors.
|
||||
"""
|
||||
with torch.no_grad():
|
||||
result = self.model(*args)
|
||||
return result
|
||||
|
@ -48,6 +81,14 @@ class ESNetwork(Network):
|
|||
return candidate_solutions
|
||||
|
||||
def calc_gradients(self, *args):
|
||||
"""
|
||||
Calculate gradients by shifting parameters
|
||||
towards the networks with the highest fitness value.
|
||||
|
||||
This is calculated by evaluating the fitness of multiple
|
||||
networks according to the fitness function specified in
|
||||
the class.
|
||||
"""
|
||||
## Generate Noise
|
||||
white_noise_dict, noise_dict = self._generate_noise_dicts()
|
||||
|
||||
|
|
|
@ -1,6 +1,21 @@
|
|||
class Network:
|
||||
"""
|
||||
Wrapper around model which provides copy of it instead of trained weights
|
||||
Wrapper around model and optimizer in PyTorch to abstract away common use cases.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model : nn.Module
|
||||
A PyTorch nn.Module.
|
||||
optimizer
|
||||
A PyTorch opimtizer from torch.optim.
|
||||
config : dict
|
||||
A dictionary of configuration items.
|
||||
device
|
||||
A device to send the weights to.
|
||||
logger
|
||||
Keeps track of historical weights
|
||||
name
|
||||
For use in logger to differentiate in analysis.
|
||||
"""
|
||||
def __init__(self, model, optimizer, config, device = None, logger = None, name = ""):
|
||||
self.model = model
|
||||
|
@ -18,14 +33,29 @@ class Network:
|
|||
return self.model(*args)
|
||||
|
||||
def clamp_gradients(self, x = 1):
|
||||
"""
|
||||
Forcing gradients to stay within a certain interval
|
||||
by setting it to the bound if it goes over it.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : number > 0
|
||||
Sets the interval to be [-x, x]
|
||||
"""
|
||||
assert x > 0
|
||||
for param in self.model.parameters():
|
||||
param.grad.data.clamp_(-x, x)
|
||||
|
||||
def zero_grad(self):
|
||||
"""
|
||||
Clears out gradients held in the model.
|
||||
"""
|
||||
self.model.zero_grad()
|
||||
|
||||
def step(self):
|
||||
"""
|
||||
Run a step of the optimizer on `model`.
|
||||
"""
|
||||
self.optimizer.step()
|
||||
|
||||
def log_named_parameters(self):
|
||||
|
|
|
@ -6,6 +6,24 @@ import math
|
|||
# This class utilizes this property of the normal distribution
|
||||
# N(mu, sigma) = mu + sigma * N(0, 1)
|
||||
class NoisyLinear(nn.Linear):
|
||||
"""
|
||||
Draws the parameters of nn.Linear from a normal distribution.
|
||||
The parameters of the normal distribution are registered as
|
||||
learnable parameters in the neural network.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
in_features
|
||||
Size of each input sample.
|
||||
out_features
|
||||
Size of each output sample.
|
||||
sigma_init
|
||||
The starting standard deviation of guassian noise.
|
||||
bias
|
||||
If set to False, the layer will not
|
||||
learn an additive bias.
|
||||
Default: True
|
||||
"""
|
||||
def __init__(self, in_features, out_features, sigma_init = 0.017, bias = True):
|
||||
super(NoisyLinear, self).__init__(in_features, out_features, bias = bias)
|
||||
# One of the parameters the network is going to tune is the
|
||||
|
@ -27,6 +45,15 @@ class NoisyLinear(nn.Linear):
|
|||
nn.init.uniform_(self.bias, -std, std)
|
||||
|
||||
def forward(self, x):
|
||||
r"""
|
||||
Calculates the output :math:`y` through the following:
|
||||
|
||||
:math:`sigma \sim N(mu_1, std_1)`
|
||||
|
||||
:math:`bias \sim N(mu_2, std_2)`
|
||||
|
||||
:math:`y = sigma \cdot x + bias`
|
||||
"""
|
||||
# Fill s_normal_weight with values from the standard normal distribution
|
||||
self.s_normal_weight.normal_()
|
||||
weight_noise = self.sigma_weight * self.s_normal_weight.clone().requires_grad_()
|
||||
|
|
|
@ -1,25 +1,43 @@
|
|||
from copy import deepcopy
|
||||
# Derived from ptan library
|
||||
|
||||
class TargetNetwork:
|
||||
"""
|
||||
Wrapper around model which provides copy of it instead of trained weights
|
||||
Creates a clone of a network with syncing capabilities.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
network
|
||||
The network to clone.
|
||||
device
|
||||
The device to put the cloned parameters in.
|
||||
"""
|
||||
def __init__(self, network, device = None):
|
||||
self.model = network.model
|
||||
self.target_model = deepcopy(network.model)
|
||||
if network.device is not None:
|
||||
if device is not None:
|
||||
self.target_model = self.target_model.to(device)
|
||||
elif network.device is not None:
|
||||
self.target_model = self.target_model.to(network.device)
|
||||
|
||||
def __call__(self, *args):
|
||||
return self.model(*args)
|
||||
|
||||
def sync(self):
|
||||
"""
|
||||
Perform a full state sync with the originating model.
|
||||
"""
|
||||
self.target_model.load_state_dict(self.model.state_dict())
|
||||
|
||||
def partial_sync(self, tau):
|
||||
"""
|
||||
Blend params of target net with params from the model
|
||||
:param tau:
|
||||
Partially move closer to the parameters of the originating
|
||||
model by updating parameters to be a mix of the
|
||||
originating and the clone models.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tau : number
|
||||
A number between 0-1 which indicates the proportion of the originator and clone in the new clone.
|
||||
"""
|
||||
assert isinstance(tau, float)
|
||||
assert 0.0 < tau <= 1.0
|
||||
|
|
|
@ -1,5 +1,32 @@
|
|||
from .Scheduler import Scheduler
|
||||
class ExponentialScheduler(Scheduler):
|
||||
r"""
|
||||
A exponential scheduler that given a certain number
|
||||
of iterations, spaces the values between
|
||||
a start and an end point in an exponential order.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The forumula used to produce the value :math:`y` is based on the number of
|
||||
times you call `next`. (denoted as :math:`i`)
|
||||
|
||||
:math:`y(1) = initial\_value`
|
||||
|
||||
:math:`base = \sqrt[iterations]{\frac{end\_value}{initial\_value}}`
|
||||
|
||||
:math:`y(i) = y(1) \cdot base^{i - 1}`
|
||||
|
||||
Another property is that :math:`y(iterations) = end\_value`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
initial_value : number
|
||||
The first value returned in the schedule.
|
||||
end_value: number
|
||||
The value returned when the maximum number of iterations are reached
|
||||
iterations: int
|
||||
The total number of iterations
|
||||
"""
|
||||
def __init__(self, initial_value, end_value, iterations):
|
||||
super(ExponentialScheduler, self).__init__(initial_value, end_value, iterations)
|
||||
self.base = (end_value / initial_value) ** (1.0 / iterations)
|
||||
|
|
|
@ -1,5 +1,29 @@
|
|||
from .Scheduler import Scheduler
|
||||
class LinearScheduler(Scheduler):
|
||||
r"""
|
||||
A linear scheduler that given a certain number
|
||||
of iterations, equally spaces the values between
|
||||
a start and an end point.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The forumula used to produce the value :math:`y` is based on the number of
|
||||
times you call `next`. (denoted as :math:`i`)
|
||||
|
||||
:math:`y(1) = initial\_value`
|
||||
|
||||
:math:`y(i) = slope(i - 1) + y(1)`
|
||||
where :math:`slope = \frac{end\_value - initial\_value}{iterations}`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
initial_value : number
|
||||
The first value returned in the schedule.
|
||||
end_value: number
|
||||
The value returned when the maximum number of iterations are reached
|
||||
iterations: int
|
||||
The total number of iterations
|
||||
"""
|
||||
def __init__(self, initial_value, end_value, iterations):
|
||||
super(LinearScheduler, self).__init__(initial_value, end_value, iterations)
|
||||
self.slope = (end_value - initial_value) / iterations
|
||||
|
|
|
@ -4,6 +4,14 @@ import random
|
|||
import torch
|
||||
|
||||
def set_seed(SEED):
|
||||
"""
|
||||
Set the seed for repeatability purposes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
SEED : int
|
||||
The seed to set numpy, random, and torch to.
|
||||
"""
|
||||
# Set `PYTHONHASHSEED` environment variable at a fixed value
|
||||
environ['PYTHONHASHSEED'] = str(SEED)
|
||||
|
||||
|
|
7
setup.py
7
setup.py
|
@ -12,4 +12,11 @@ setuptools.setup(
|
|||
description="Reinforcement Learning Framework for PyTorch",
|
||||
version="0.1",
|
||||
packages=setuptools.find_packages(),
|
||||
install_requires=[
|
||||
"numpy~=1.16.0",
|
||||
"opencv-python~=4.2.0.32",
|
||||
"gym~=0.10.11",
|
||||
"torch~=1.4.0",
|
||||
"numba~=0.48.0"
|
||||
]
|
||||
)
|
6
tests/test.py
Normal file
6
tests/test.py
Normal file
|
@ -0,0 +1,6 @@
|
|||
import rltorch
|
||||
import unittest
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def test(self):
|
||||
pass
|
17
tox.ini
Normal file
17
tox.ini
Normal file
|
@ -0,0 +1,17 @@
|
|||
[tox]
|
||||
envlist =
|
||||
py36
|
||||
py37
|
||||
py38
|
||||
|
||||
[testenv]
|
||||
deps = coverage
|
||||
commands =
|
||||
coverage run --source=tests,rltorch -m unittest discover tests
|
||||
|
||||
|
||||
[testenv:py38]
|
||||
commands =
|
||||
coverage run --source=tests,rltorch -m unittest discover tests
|
||||
coverage report -m
|
||||
|
Loading…
Reference in a new issue