Cleaned up scripts, added more comments

This commit is contained in:
Brandon Rozek 2019-03-04 17:09:46 -05:00
parent e42f5bba1b
commit a59f84b446
11 changed files with 103 additions and 436 deletions

View file

@ -1,5 +1,4 @@
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
@ -10,8 +9,10 @@ import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
#
## Networks
#
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
@ -32,37 +33,37 @@ class Policy(nn.Module):
x = F.softmax(self.action_prob(x), dim = 1)
return x
#
## Configuration
#
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 50
config['total_evaluation_episodes'] = 5
config['batch_size'] = 32
config['learning_rate'] = 1e-1
config['target_sync_tau'] = 1e-1
config['discount_rate'] = 0.99
config['replay_skip'] = 0
# How many episodes between printing out the episode stats
config['print_stat_n_eps'] = 1
config['disable_cuda'] = False
def train(env, net, actor, config, logger = None, logwriter = None):
#
## Training Loop
#
def train(runner, net, config, logger = None, logwriter = None):
finished = False
episode_num = 1
while not finished:
rltorch.env.simulateEnvEps(env, actor, config, logger = logger, name = "Training")
episode_num += 1
runner.run()
net.calc_gradients()
net.step()
# When the episode number changes, log network paramters
if logwriter is not None:
net.log_named_parameters()
logwriter.write(logger)
finished = episode_num > config['total_training_episodes']
finished = runner.episode_num > config['total_training_episodes']
#
## Loss function
#
def fitness(model):
env = gym.make("Acrobot-v1")
state = torch.from_numpy(env.reset()).float().unsqueeze(0)
@ -75,9 +76,12 @@ def fitness(model):
next_state, reward, done, _ = env.step(action)
total_reward += reward
state = torch.from_numpy(next_state).float().unsqueeze(0)
return total_reward
return -total_reward
if __name__ == "__main__":
# Hide internal gym warnings
gym.logger.set_level(40)
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
@ -90,21 +94,21 @@ if __name__ == "__main__":
# Logging
logger = rltorch.log.Logger()
# logwriter = rltorch.log.LogWriter(logger, SummaryWriter())
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 100, fitness, config, device = device, name = "ES", logger = logger)
net.model.share_memory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(net, action_size, device = device)
print("Training...")
# Runner performs an episode of the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", logwriter = logwriter)
train(env, net, actor, config, logger = logger, logwriter = logwriter)
print("Training...")
train(runner, net, config, logger = logger, logwriter = logwriter)
# For profiling...
# import cProfile