Initial Commit
This commit is contained in:
commit
a03abe2bb1
27 changed files with 906 additions and 0 deletions
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
__pycache__/
|
||||
*.py[cod]
|
||||
rlenv/
|
||||
runs/
|
37
Readme.md
Normal file
37
Readme.md
Normal file
|
@ -0,0 +1,37 @@
|
|||
# rltorch
|
||||
A reinforcement learning framework with the primary purpose of learning and cleaning up personal scripts.
|
||||
|
||||
## Installation
|
||||
From GitHub
|
||||
```
|
||||
pip install git+https://github.com/brandon-rozek/rltorch
|
||||
```
|
||||
|
||||
## Components
|
||||
### Config
|
||||
This is a dictionary that is shared around the different components. Contains hyperparameters and other configuration values.
|
||||
|
||||
### Environment
|
||||
This component needs to support the standard openai functions reset and step.
|
||||
|
||||
### Logger
|
||||
For Tensorboard to work, you need to define a logger that will (optionally) later go into the network, runner, and agent/trainer.
|
||||
|
||||
Due to issues with multiprocessing, the Logger is a shared dictionary of lists that get appended to and the LogWriter writes on the main thread.
|
||||
|
||||
### Network
|
||||
A network takes a PyTorch nn.Module, PyTorch optimizer, configuration, and the optional logger.
|
||||
|
||||
### Target Network
|
||||
Takes in a network and provides methods to sync a copy of the original network.
|
||||
|
||||
### Action Selector
|
||||
Typtically takes in a network which it then uses to help make decisions on which actions to take.
|
||||
|
||||
For example, the ArgMaxSelector chooses the action that produces the highest entry in the output vector of the network.
|
||||
|
||||
### Memory
|
||||
Stores experiences during simulations of the environment. Useful for later training.
|
||||
|
||||
### Agents
|
||||
Takes in a network and performs some sort of training upon it.
|
123
examples/acrobot.py
Normal file
123
examples/acrobot.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import rltorch
|
||||
import rltorch.network as rn
|
||||
import rltorch.memory as M
|
||||
import rltorch.env as E
|
||||
from rltorch.action_selector import ArgMaxSelector
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
class Value(nn.Module):
|
||||
def __init__(self, state_size, action_size):
|
||||
super(Value, self).__init__()
|
||||
self.state_size = state_size
|
||||
self.action_size = action_size
|
||||
|
||||
self.fc1 = rn.NoisyLinear(state_size, 64)
|
||||
|
||||
self.value_fc = rn.NoisyLinear(64, 64)
|
||||
self.value = rn.NoisyLinear(64, 1)
|
||||
|
||||
self.advantage_fc = rn.NoisyLinear(64, 64)
|
||||
self.advantage = rn.NoisyLinear(64, action_size)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
|
||||
state_value = F.relu(self.value_fc(x))
|
||||
state_value = self.value(state_value)
|
||||
|
||||
advantage = F.relu(self.advantage_fc(x))
|
||||
advantage = self.advantage(advantage)
|
||||
|
||||
x = state_value + advantage - advantage.mean()
|
||||
|
||||
return x
|
||||
|
||||
|
||||
config = {}
|
||||
config['seed'] = 901
|
||||
config['environment_name'] = 'Acrobot-v1'
|
||||
config['memory_size'] = 2000
|
||||
config['total_training_episodes'] = 50
|
||||
config['total_evaluation_episodes'] = 10
|
||||
config['batch_size'] = 32
|
||||
config['learning_rate'] = 1e-3
|
||||
config['target_sync_tau'] = 1e-1
|
||||
config['weight_decay'] = 1e-5
|
||||
config['discount_rate'] = 0.99
|
||||
config['replay_skip'] = 0
|
||||
# How many episodes between printing out the episode stats
|
||||
config['print_stat_n_eps'] = 1
|
||||
config['disable_cuda'] = False
|
||||
|
||||
def train(runner, agent, config, logwriter = None):
|
||||
finished = False
|
||||
episode_num = 1
|
||||
while not finished:
|
||||
runner.run(config['replay_skip'] + 1, printstat = runner.episode_num % config['print_stat_n_eps'] == 0)
|
||||
agent.learn()
|
||||
runner.join()
|
||||
# When the episode number changes, write out the weight histograms
|
||||
if logwriter is not None and episode_num < runner.episode_num:
|
||||
episode_num = runner.episode_num
|
||||
agent.net.log_named_parameters()
|
||||
|
||||
if logwriter is not None:
|
||||
logwriter.write()
|
||||
finished = runner.episode_num > config['total_training_episodes']
|
||||
|
||||
|
||||
# Setting up the environment
|
||||
rltorch.set_seed(config['seed'])
|
||||
print("Setting up environment...", end = " ")
|
||||
env = E.TorchWrap(gym.make(config['environment_name']))
|
||||
env.seed(config['seed'])
|
||||
print("Done.")
|
||||
|
||||
state_size = env.observation_space.shape[0]
|
||||
action_size = env.action_space.n
|
||||
|
||||
# Logging
|
||||
logger = rltorch.log.Logger()
|
||||
logwriter = rltorch.log.LogWriter(logger, SummaryWriter())
|
||||
|
||||
# Setting up the networks
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
|
||||
net = rn.Network(Value(state_size, action_size),
|
||||
torch.optim.Adam, config, logger = logger, name = "DQN")
|
||||
target_net = rn.TargetNetwork(net)
|
||||
|
||||
# Actor takes a net and uses it to produce actions from given states
|
||||
actor = ArgMaxSelector(net, action_size)
|
||||
# Memory stores experiences for later training
|
||||
memory = M.ReplayMemory(capacity = config['memory_size'])
|
||||
|
||||
# Runner performs a certain number of steps in the environment
|
||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, memory = memory, logger = logger, name = "Training")
|
||||
runner.start()
|
||||
|
||||
# Agent is what performs the training
|
||||
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
|
||||
|
||||
print("Training...")
|
||||
train(runner, agent, config, logwriter = logwriter)
|
||||
|
||||
# For profiling...
|
||||
# import cProfile
|
||||
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
|
||||
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
|
||||
|
||||
print("Training Finished.")
|
||||
runner.terminate() # We don't need the extra process anymore
|
||||
|
||||
print("Evaluating...")
|
||||
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
|
||||
print("Evaulations Done.")
|
||||
|
||||
logwriter.close() # We don't need to write anything out to disk anymore
|
140
examples/pong.py
Normal file
140
examples/pong.py
Normal file
|
@ -0,0 +1,140 @@
|
|||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import rltorch
|
||||
import rltorch.network as rn
|
||||
import rltorch.memory as M
|
||||
import rltorch.env as E
|
||||
from rltorch.action_selector import ArgMaxSelector
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
class Value(nn.Module):
|
||||
def __init__(self, state_size, action_size):
|
||||
super(Value, self).__init__()
|
||||
self.state_size = state_size
|
||||
self.action_size = action_size
|
||||
|
||||
self.conv1 = nn.Conv2d(4, 32, kernel_size = (8, 8), stride = (4, 4))
|
||||
self.conv2 = nn.Conv2d(32, 64, kernel_size = (4, 4), stride = (2, 2))
|
||||
self.conv3 = nn.Conv2d(64, 64, kernel_size = (3, 3), stride = (1, 1))
|
||||
|
||||
self.fc1 = rn.NoisyLinear(64 * 6 * 6, 384)
|
||||
|
||||
self.value_fc = rn.NoisyLinear(384, 384)
|
||||
self.value = rn.NoisyLinear(384, 1)
|
||||
|
||||
self.advantage_fc = rn.NoisyLinear(384, 384)
|
||||
self.advantage = rn.NoisyLinear(384, action_size)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = F.relu(self.conv2(x))
|
||||
x = F.relu(self.conv3(x))
|
||||
|
||||
# Makes batch_size dimension again
|
||||
x = x.view(-1, 64 * 6 * 6)
|
||||
x = F.relu(self.fc1(x))
|
||||
|
||||
state_value = F.relu(self.value_fc(x))
|
||||
state_value = self.value(state_value)
|
||||
|
||||
advantage = F.relu(self.advantage_fc(x))
|
||||
advantage = self.advantage(advantage)
|
||||
|
||||
x = state_value + advantage - advantage.mean()
|
||||
|
||||
# For debugging purposes...
|
||||
if torch.isnan(x).any().item():
|
||||
print("WARNING NAN IN MODEL DETECTED")
|
||||
|
||||
return x
|
||||
|
||||
|
||||
|
||||
|
||||
config = {}
|
||||
config['seed'] = 901
|
||||
config['environment_name'] = 'PongNoFrameskip-v4'
|
||||
config['memory_size'] = 4000
|
||||
config['total_training_episodes'] = 50
|
||||
config['total_evaluation_episodes'] = 10
|
||||
config['learning_rate'] = 1e-4
|
||||
config['target_sync_tau'] = 1e-3
|
||||
config['weight_decay'] = 1e-8
|
||||
config['discount_rate'] = 0.999
|
||||
config['replay_skip'] = 4
|
||||
config['batch_size'] = 32 * (config['replay_skip'] + 1)
|
||||
# How many episodes between printing out the episode stats
|
||||
config['print_stat_n_eps'] = 1
|
||||
config['disable_cuda'] = False
|
||||
|
||||
def train(runner, agent, config, logwriter = None):
|
||||
finished = False
|
||||
episode_num = 1
|
||||
while not finished:
|
||||
runner.run(config['replay_skip'] + 1, printstat = runner.episode_num % config['print_stat_n_eps'] == 0)
|
||||
agent.learn()
|
||||
runner.join()
|
||||
# When the episode number changes, write out the weight histograms
|
||||
if logwriter is not None and episode_num < runner.episode_num:
|
||||
episode_num = runner.episode_num
|
||||
agent.net.log_named_parameters()
|
||||
|
||||
if logwriter is not None:
|
||||
logwriter.write()
|
||||
finished = runner.episode_num > config['total_training_episodes']
|
||||
|
||||
|
||||
rltorch.set_seed(config['seed'])
|
||||
print("Setting up environment...", end = " ")
|
||||
env = E.FrameStack(E.TorchWrap(
|
||||
E.ProcessFrame(E.FireResetEnv(gym.make(config['environment_name'])),
|
||||
resize_shape = (80, 80), crop_bounds = [34, 194, 15, 145], grayscale = True))
|
||||
, 4)
|
||||
env.seed(config['seed'])
|
||||
print("Done.")
|
||||
|
||||
state_size = env.observation_space.shape[0]
|
||||
action_size = env.action_space.n
|
||||
|
||||
# Logging
|
||||
logger = rltorch.log.Logger()
|
||||
logwriter = rltorch.log.LogWriter(logger, SummaryWriter())
|
||||
|
||||
# Setting up the networks
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
|
||||
net = rn.Network(Value(state_size, action_size),
|
||||
torch.optim.Adam, config, logger = logger, name = "DQN")
|
||||
target_net = rn.TargetNetwork(net)
|
||||
|
||||
# Actor takes a network and uses it to produce actions from given states
|
||||
actor = ArgMaxSelector(net, action_size)
|
||||
# Memory stores experiences for later training
|
||||
memory = M.ReplayMemory(capacity = config['memory_size'])
|
||||
|
||||
# Runner performs a certain number of steps in the environment
|
||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, memory = memory, logger = logger, name = "Training")
|
||||
runner.start()
|
||||
|
||||
# Agent is what performs the training
|
||||
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
|
||||
|
||||
print("Training...")
|
||||
train(runner, agent, config, logwriter = logwriter)
|
||||
|
||||
# For profiling...
|
||||
# import cProfile
|
||||
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
|
||||
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
|
||||
|
||||
print("Training Finished.")
|
||||
runner.terminate() # We don't need the extra process anymore
|
||||
|
||||
print("Evaluating...")
|
||||
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
|
||||
print("Evaulations Done.")
|
||||
|
||||
logwriter.close() # We don't need to write anything out to disk anymore
|
31
requirements.txt
Normal file
31
requirements.txt
Normal file
|
@ -0,0 +1,31 @@
|
|||
absl-py==0.7.0
|
||||
astor==0.7.1
|
||||
atari-py==0.1.7
|
||||
certifi==2018.11.29
|
||||
chardet==3.0.4
|
||||
future==0.17.1
|
||||
gast==0.2.2
|
||||
grpcio==1.18.0
|
||||
gym==0.10.11
|
||||
h5py==2.9.0
|
||||
idna==2.8
|
||||
Keras-Applications==1.0.7
|
||||
Keras-Preprocessing==1.0.8
|
||||
Markdown==3.0.1
|
||||
numpy==1.16.0
|
||||
opencv-python==4.0.0.21
|
||||
Pillow==5.4.1
|
||||
pkg-resources==0.0.0
|
||||
protobuf==3.6.1
|
||||
pyglet==1.3.2
|
||||
PyOpenGL==3.1.0
|
||||
requests==2.21.0
|
||||
scipy==1.2.0
|
||||
six==1.12.0
|
||||
tensorboard==1.12.2
|
||||
tensorboardX==1.6
|
||||
tensorflow==1.12.0
|
||||
termcolor==1.1.0
|
||||
torch==1.0.0
|
||||
urllib3==1.24.1
|
||||
Werkzeug==0.14.1
|
8
rltorch/__init__.py
Normal file
8
rltorch/__init__.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
from . import action_selector
|
||||
from . import agents
|
||||
from . import env
|
||||
from . import memory
|
||||
from . import network
|
||||
from . import mp
|
||||
from .seed import *
|
||||
from . import log
|
18
rltorch/action_selector/ArgMaxSelector.py
Normal file
18
rltorch/action_selector/ArgMaxSelector.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
from random import randrange
|
||||
import torch
|
||||
class ArgMaxSelector:
|
||||
def __init__(self, model, action_size, device = None):
|
||||
self.model = model
|
||||
self.action_size = action_size
|
||||
self.device = device
|
||||
def random_act(self):
|
||||
return randrange(self.action_size)
|
||||
def best_act(self, state):
|
||||
with torch.no_grad():
|
||||
if self.device is not None:
|
||||
self.device.to(self.device)
|
||||
action_values = self.model(state).squeeze(0)
|
||||
action = self.random_act() if (action_values[0] == action_values).all() else action_values.argmax().item()
|
||||
return action
|
||||
def act(self, state):
|
||||
return self.best_act(state)
|
14
rltorch/action_selector/EpsilonGreedySelector.py
Normal file
14
rltorch/action_selector/EpsilonGreedySelector.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
from .ArgMaxSelector import ArgMaxSelector
|
||||
class EpsilonGreedySelector(ArgMaxSelector):
|
||||
def __init__(self, model, action_size, device = None, epsilon = 0.1, epsilon_decay = 1, epsilon_min = 0.1):
|
||||
super(EpsilonGreedySelector, self).__init__(model, action_size, device = device)
|
||||
self.epsilon = epsilon
|
||||
self.epsilon_decay = epsilon_decay
|
||||
self.epsilon_min = epsilon_min
|
||||
# random_act is already implemented in ArgMaxSelector
|
||||
# best_act is already implemented in ArgMaxSelector
|
||||
def act(self, state):
|
||||
action = self.random_act() if np.random.rand() < self.epsilon else self.best_act()
|
||||
if self.epsilon > self.epsilon_min:
|
||||
self.epsilon = self.epsilon * self.epsilon_decay
|
||||
return action
|
10
rltorch/action_selector/RandomSelector.py
Normal file
10
rltorch/action_selector/RandomSelector.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
from random import randrange
|
||||
class RandomSelector():
|
||||
def __init__(self, action_size):
|
||||
self.action_size = action_size
|
||||
def random_act(self):
|
||||
return randrange(action_size)
|
||||
def best_act(self, state):
|
||||
return self.random_act()
|
||||
def act(self, state):
|
||||
return self.random_act()
|
3
rltorch/action_selector/__init__.py
Normal file
3
rltorch/action_selector/__init__.py
Normal file
|
@ -0,0 +1,3 @@
|
|||
from .ArgMaxSelector import *
|
||||
from .EpsilonGreedySelector import *
|
||||
from .RandomSelector import *
|
54
rltorch/agents/DQNAgent.py
Normal file
54
rltorch/agents/DQNAgent.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
import rltorch.memory as M
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from copy import deepcopy
|
||||
|
||||
class DQNAgent:
|
||||
def __init__(self, net , memory, config, target_net = None, logger = None):
|
||||
self.net = net
|
||||
self.target_net = target_net
|
||||
self.memory = memory
|
||||
self.config = deepcopy(config)
|
||||
self.logger = logger
|
||||
|
||||
def learn(self):
|
||||
if len(self.memory) < self.config['batch_size']:
|
||||
return
|
||||
|
||||
minibatch = self.memory.sample(self.config['batch_size'])
|
||||
state_batch, action_batch, reward_batch, next_state_batch, not_done_batch = M.zip_batch(minibatch)
|
||||
|
||||
obtained_values = self.net(state_batch).gather(1, action_batch.view(self.config['batch_size'], 1))
|
||||
|
||||
with torch.no_grad():
|
||||
# Use the target net to produce action values for the next state
|
||||
# and the regular net to select the action
|
||||
# That way we decouple the value and action selecting processes (DOUBLE DQN)
|
||||
not_done_size = not_done_batch.sum()
|
||||
if self.target_net is not None:
|
||||
next_state_values = self.target_net(next_state_batch)
|
||||
next_best_action = self.net(next_state_batch).argmax(1)
|
||||
else:
|
||||
next_state_values = self.net(next_state_batch)
|
||||
next_best_action = next_state_values.argmax(1)
|
||||
|
||||
best_next_state_value = torch.zeros(self.config['batch_size'])
|
||||
best_next_state_value[not_done_batch] = next_state_values.gather(1, next_best_action.view((not_done_size, 1))).squeeze(1)
|
||||
|
||||
expected_values = (reward_batch + (self.config['discount_rate'] * best_next_state_value)).unsqueeze(1)
|
||||
|
||||
loss = F.mse_loss(obtained_values, expected_values)
|
||||
|
||||
if self.logger is not None:
|
||||
self.logger.append("Loss", loss.item())
|
||||
|
||||
self.net.zero_grad()
|
||||
loss.backward()
|
||||
self.net.clamp_gradients()
|
||||
self.net.step()
|
||||
|
||||
if self.target_net is not None:
|
||||
if 'target_sync_tau' in self.config:
|
||||
self.target_net.partial_sync(self.config['target_sync_tau'])
|
||||
else:
|
||||
self.target_net.sync()
|
1
rltorch/agents/__init__.py
Normal file
1
rltorch/agents/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
from .DQNAgent import *
|
2
rltorch/env/__init__.py
vendored
Normal file
2
rltorch/env/__init__.py
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
from .wrappers import *
|
||||
from .simulate import *
|
21
rltorch/env/simulate.py
vendored
Normal file
21
rltorch/env/simulate.py
vendored
Normal file
|
@ -0,0 +1,21 @@
|
|||
def simulateEnvEps(env, actor, config, total_episodes = 1, memory = None, logger = None, name = ""):
|
||||
for episode in range(total_episodes):
|
||||
state = env.reset()
|
||||
done = False
|
||||
episode_reward = 0
|
||||
while not done:
|
||||
action = actor.act(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
|
||||
episode_reward = episode_reward + reward
|
||||
if memory is not None:
|
||||
memory.append(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
|
||||
if episode % config['print_stat_n_eps'] == 0:
|
||||
print("episode: {}/{}, score: {}"
|
||||
.format(episode, total_episodes, episode_reward))
|
||||
|
||||
if logger is not None:
|
||||
logger.append(name + '/EpisodeReward', episode_reward)
|
||||
|
129
rltorch/env/wrappers.py
vendored
Normal file
129
rltorch/env/wrappers.py
vendored
Normal file
|
@ -0,0 +1,129 @@
|
|||
import gym
|
||||
import torch
|
||||
from gym import spaces
|
||||
import cv2
|
||||
from collections import deque
|
||||
|
||||
# Mostly derived from OpenAI baselines
|
||||
class FireResetEnv(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
"""Take action on reset for environments that are fixed until firing."""
|
||||
gym.Wrapper.__init__(self, env)
|
||||
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
|
||||
assert len(env.unwrapped.get_action_meanings()) >= 3
|
||||
|
||||
def reset(self, **kwargs):
|
||||
self.env.reset(**kwargs)
|
||||
obs, _, done, _ = self.env.step(1)
|
||||
if done:
|
||||
self.env.reset(**kwargs)
|
||||
obs, _, done, _ = self.env.step(2)
|
||||
if done:
|
||||
self.env.reset(**kwargs)
|
||||
return obs
|
||||
|
||||
def step(self, ac):
|
||||
return self.env.step(ac)
|
||||
|
||||
class LazyFrames(object):
|
||||
def __init__(self, frames):
|
||||
"""This object ensures that common frames between the observations are only stored once.
|
||||
It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay
|
||||
buffers.
|
||||
This object should only be converted to numpy array before being passed to the model.
|
||||
You'd not believe how complex the previous solution was."""
|
||||
self._frames = frames
|
||||
self._out = None
|
||||
|
||||
def _force(self):
|
||||
if self._out is None:
|
||||
self._out = torch.stack(self._frames)
|
||||
self._frames = None
|
||||
return self._out
|
||||
|
||||
def __array__(self, dtype=None):
|
||||
out = self._force()
|
||||
if dtype is not None:
|
||||
out = out.astype(dtype)
|
||||
return out
|
||||
|
||||
def __len__(self):
|
||||
return len(self._force())
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self._force()[i]
|
||||
|
||||
class FrameStack(gym.Wrapper):
|
||||
def __init__(self, env, k):
|
||||
"""Stack k last frames.
|
||||
Returns lazy array, which is much more memory efficient.
|
||||
See Also
|
||||
--------
|
||||
baselines.common.atari_wrappers.LazyFrames
|
||||
"""
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.k = k
|
||||
self.frames = deque([], maxlen=k)
|
||||
shp = env.observation_space.shape
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype)
|
||||
|
||||
def reset(self):
|
||||
ob = self.env.reset()
|
||||
for _ in range(self.k):
|
||||
self.frames.append(ob)
|
||||
return self._get_ob()
|
||||
|
||||
def step(self, action):
|
||||
ob, reward, done, info = self.env.step(action)
|
||||
self.frames.append(ob)
|
||||
return self._get_ob(), reward, done, info
|
||||
|
||||
def _get_ob(self):
|
||||
assert len(self.frames) == self.k
|
||||
# return LazyFrames(list(self.frames))
|
||||
return torch.cat(list(self.frames)).unsqueeze(0)
|
||||
|
||||
class ProcessFrame(gym.Wrapper):
|
||||
def __init__(self, env, resize_shape = None, crop_bounds = None, grayscale = False):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.resize_shape = resize_shape
|
||||
self.crop_bounds = crop_bounds
|
||||
self.grayscale = grayscale
|
||||
|
||||
def reset(self):
|
||||
return self._preprocess(self.env.reset())
|
||||
|
||||
def step(self, action):
|
||||
next_state, reward, done, info = self.env.step(action)
|
||||
next_state = self._preprocess(next_state)
|
||||
return next_state, reward, done, info
|
||||
|
||||
def _preprocess(self, frame):
|
||||
if self.grayscale:
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
||||
if self.crop_bounds is not None and len(self.crop_bounds) == 4:
|
||||
frame = frame[self.crop_bounds[0]:self.crop_bounds[1], self.crop_bounds[2]:self.crop_bounds[3]]
|
||||
if self.resize_shape is not None and len(self.resize_shape) == 2:
|
||||
frame = cv2.resize(frame, self.resize_shape, interpolation=cv2.INTER_AREA)
|
||||
# Normalize
|
||||
frame = frame / 255
|
||||
return frame
|
||||
|
||||
|
||||
# Turns observations into torch tensors
|
||||
# Adds an additional dimension that's suppose to represent the batch dim
|
||||
class TorchWrap(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
|
||||
def reset(self):
|
||||
return self._convert(self.env.reset())
|
||||
|
||||
def step(self, action):
|
||||
next_state, reward, done, info = self.env.step(action)
|
||||
next_state = self._convert(next_state)
|
||||
return next_state, reward, done, info
|
||||
|
||||
def _convert(self, frame):
|
||||
frame = torch.from_numpy(frame).unsqueeze(0).float()
|
||||
return frame
|
44
rltorch/log.py
Normal file
44
rltorch/log.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
from collections import Counter
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
class Logger:
|
||||
def __init__(self):
|
||||
self.log = {}
|
||||
def append(self, tag, value):
|
||||
if tag not in self.log.keys():
|
||||
self.log[tag] = []
|
||||
self.log[tag].append(value)
|
||||
def keys(self):
|
||||
return self.log.keys()
|
||||
def __len__(self):
|
||||
return len(self.log)
|
||||
def __iter__(self):
|
||||
return iter(self.log)
|
||||
def __contains__(self, value):
|
||||
return value in self.log
|
||||
def __getitem__(self, index):
|
||||
return self.log[index]
|
||||
def __setitem__(self, index, value):
|
||||
self.log[index] = value
|
||||
def __reversed__(self):
|
||||
return reversed(self.log)
|
||||
|
||||
# Workaround since we can't use SummaryWriter in a different process
|
||||
class LogWriter:
|
||||
def __init__(self, logger, writer):
|
||||
self.logger = logger
|
||||
self.writer = writer
|
||||
self.steps = Counter()
|
||||
def write(self):
|
||||
for key in self.logger.keys():
|
||||
for value in self.logger[key]:
|
||||
self.steps[key] += 1
|
||||
if isinstance(value, int) or isinstance(value, float):
|
||||
self.writer.add_scalar(key, value, self.steps[key])
|
||||
if isinstance(value, np.ndarray) or isinstance(value, torch.Tensor):
|
||||
self.writer.add_histogram(key, value, self.steps[key])
|
||||
self.logger.log = {}
|
||||
def close(self):
|
||||
self.writer.close()
|
||||
|
55
rltorch/memory/ReplayMemory.py
Normal file
55
rltorch/memory/ReplayMemory.py
Normal file
|
@ -0,0 +1,55 @@
|
|||
from random import sample
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
Transition = namedtuple('Transition',
|
||||
('state', 'action', 'reward', 'next_state', 'done'))
|
||||
|
||||
# Implements a Ring Buffer
|
||||
class ReplayMemory(object):
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.memory = []
|
||||
self.position = 0
|
||||
|
||||
def append(self, *args):
|
||||
"""Saves a transition."""
|
||||
if len(self.memory) < self.capacity:
|
||||
self.memory.append(None)
|
||||
self.memory[self.position] = Transition(*args)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def clear(self):
|
||||
self.memory.clear()
|
||||
self.position = 0
|
||||
|
||||
def sample(self, batch_size):
|
||||
return sample(self.memory, batch_size)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.memory)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.memory)
|
||||
|
||||
def __contains__(self, value):
|
||||
return value in self.memory
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.memory[index]
|
||||
|
||||
def __setitem__(self, index, value):
|
||||
self.memory[index] = value
|
||||
|
||||
def __reversed__(self):
|
||||
return reversed(self.memory)
|
||||
|
||||
def zip_batch(minibatch):
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = zip(*minibatch)
|
||||
|
||||
state_batch = torch.cat(state_batch)
|
||||
action_batch = torch.tensor(action_batch)
|
||||
reward_batch = torch.tensor(reward_batch)
|
||||
not_done_batch = ~torch.tensor(done_batch)
|
||||
next_state_batch = torch.cat(next_state_batch)[not_done_batch]
|
||||
|
||||
return state_batch, action_batch, reward_batch, next_state_batch, not_done_batch
|
1
rltorch/memory/__init__.py
Normal file
1
rltorch/memory/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
from .ReplayMemory import *
|
35
rltorch/mp/EnvironmentEpisode.py
Normal file
35
rltorch/mp/EnvironmentEpisode.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
from copy import deepcopy
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
class EnvironmentEpisode(mp.Process):
|
||||
def __init__(self, env, actor, config, memory = None, logger = None, name = ""):
|
||||
super(EnvironmentEpisode, self).__init__()
|
||||
self.env = env
|
||||
self.actor = actor
|
||||
self.memory = memory
|
||||
self.config = deepcopy(config)
|
||||
self.logger = logger
|
||||
self.name = name
|
||||
self.episode_num = 1
|
||||
|
||||
def run(self, printstat = False):
|
||||
state = self.env.reset()
|
||||
done = False
|
||||
episode_reward = 0
|
||||
while not done:
|
||||
action = self.actor.act(state)
|
||||
next_state, reward, done, _ = self.env.step(action)
|
||||
|
||||
episode_reward = episode_reward + reward
|
||||
if self.memory is not None:
|
||||
self.memory.append(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
|
||||
if printstat:
|
||||
print("episode: {}/{}, score: {}"
|
||||
.format(self.episode_num, self.config['total_training_episodes'], episode_reward))
|
||||
if self.logger is not None:
|
||||
self.logger.append(self.name + '/EpisodeReward', episode_reward)
|
||||
|
||||
self.episode_num += 1
|
||||
|
39
rltorch/mp/EnvironmentRun.py
Normal file
39
rltorch/mp/EnvironmentRun.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
from copy import deepcopy
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
class EnvironmentRun(mp.Process):
|
||||
def __init__(self, env, actor, config, memory = None, logger = None, name = ""):
|
||||
super(EnvironmentRun, self).__init__()
|
||||
self.env = env
|
||||
self.actor = actor
|
||||
self.memory = memory
|
||||
self.config = deepcopy(config)
|
||||
self.logger = logger
|
||||
self.name = name
|
||||
self.episode_num = 1
|
||||
self.episode_reward = 0
|
||||
self.last_state = env.reset()
|
||||
|
||||
def run(self, iterations = 1, printstat = False):
|
||||
state = self.last_state
|
||||
for _ in range(iterations):
|
||||
action = self.actor.act(state)
|
||||
next_state, reward, done, _ = self.env.step(action)
|
||||
|
||||
self.episode_reward = self.episode_reward + reward
|
||||
if self.memory is not None:
|
||||
self.memory.append(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
|
||||
if done:
|
||||
if printstat:
|
||||
print("episode: {}/{}, score: {}"
|
||||
.format(self.episode_num, self.config['total_training_episodes'], self.episode_reward))
|
||||
if self.logger is not None:
|
||||
self.logger.append(self.name + '/EpisodeReward', self.episode_reward)
|
||||
self.episode_num = self.episode_num + 1
|
||||
self.episode_reward = 0
|
||||
state = self.env.reset()
|
||||
|
||||
self.last_state = state
|
||||
|
2
rltorch/mp/__init__.py
Normal file
2
rltorch/mp/__init__.py
Normal file
|
@ -0,0 +1,2 @@
|
|||
from .EnvironmentEpisode import *
|
||||
from .EnvironmentRun import *
|
29
rltorch/network/Network.py
Normal file
29
rltorch/network/Network.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
class Network:
|
||||
"""
|
||||
Wrapper around model which provides copy of it instead of trained weights
|
||||
"""
|
||||
def __init__(self, model, optimizer, config, logger = None, name = ""):
|
||||
self.model = model
|
||||
self.optimizer = optimizer(model.parameters(), lr = config['learning_rate'], weight_decay = config['weight_decay'])
|
||||
self.logger = logger
|
||||
self.name = name
|
||||
|
||||
def __call__(self, *args):
|
||||
return self.model(*args)
|
||||
|
||||
def clamp_gradients(self):
|
||||
for param in self.model.parameters():
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
|
||||
def zero_grad(self):
|
||||
self.model.zero_grad()
|
||||
|
||||
def step(self):
|
||||
self.optimizer.step()
|
||||
|
||||
def log_named_parameters(self):
|
||||
if self.logger is not None:
|
||||
for name, param in self.model.named_parameters():
|
||||
self.logger.append(self.name + "/" + name, param.cpu().detach().numpy())
|
||||
|
||||
|
44
rltorch/network/NoisyLinear.py
Normal file
44
rltorch/network/NoisyLinear.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
# This class utilizes this property of the normal distribution
|
||||
# N(mu, sigma) = mu + sigma * N(0, 1)
|
||||
class NoisyLinear(nn.Linear):
|
||||
def __init__(self, in_features, out_features, sigma_init = 0.017, bias = True):
|
||||
super(NoisyLinear, self).__init__(in_features, out_features, bias = bias)
|
||||
# One of the parameters the network is going to tune is the
|
||||
# standard deviation of the gaussian noise on the weights
|
||||
self.sigma_weight = nn.Parameter(torch.Tensor(out_features, in_features).fill_(sigma_init))
|
||||
# Reserve space for N(0, 1) of weights in the forward() call
|
||||
self.register_buffer("s_normal_weight", torch.zeros(out_features, in_features))
|
||||
if bias:
|
||||
# If a bias exists, then we manipulate the standard deviation of the
|
||||
# gaussion noise on them as well
|
||||
self.sigma_bias = nn.Parameter(torch.Tensor(out_features).fill_(sigma_init))
|
||||
# Reserve space for N(0, 1) of bias in the foward() call
|
||||
self.register_buffer("s_normal_bias", torch.zeros(out_features))
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
std = math.sqrt(3 / self.in_features)
|
||||
nn.init.uniform_(self.weight, -std, std)
|
||||
nn.init.uniform_(self.bias, -std, std)
|
||||
|
||||
def forward(self, x):
|
||||
# Fill s_normal_weight with values from the standard normal distribution
|
||||
torch.randn(self.s_normal_weight.size(), out = self.s_normal_weight,
|
||||
dtype = self.s_normal_weight.dtype, layout = self.s_normal_weight.layout, device = self.s_normal_weight.device)
|
||||
# Multiply by the standard deviation to correct the spread of Gaussian noise
|
||||
weight_noise = self.sigma_weight * self.s_normal_weight.clone().requires_grad_()
|
||||
|
||||
bias = None
|
||||
if self.bias is not None:
|
||||
# Fill s_normal_bias with values from standard normal
|
||||
torch.randn(self.s_normal_bias.size(), out = self.s_normal_bias,
|
||||
dtype = self.s_normal_bias.dtype, layout = self.s_normal_bias.layout, device = self.s_normal_bias.device)
|
||||
# Add guassian noise to original bias
|
||||
bias = self.bias + self.sigma_bias * self.s_normal_bias.clone().requires_grad_()
|
||||
|
||||
return F.linear(x, self.weight + weight_noise, bias)
|
28
rltorch/network/TargetNetwork.py
Normal file
28
rltorch/network/TargetNetwork.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
from copy import deepcopy
|
||||
# Derived from ptan library
|
||||
class TargetNetwork:
|
||||
"""
|
||||
Wrapper around model which provides copy of it instead of trained weights
|
||||
"""
|
||||
def __init__(self, network):
|
||||
self.model = network.model
|
||||
self.target_model = deepcopy(network.model)
|
||||
|
||||
def __call__(self, *args):
|
||||
return self.model(*args)
|
||||
|
||||
def sync(self):
|
||||
self.target_model.load_state_dict(self.model.state_dict())
|
||||
|
||||
def partial_sync(self, tau):
|
||||
"""
|
||||
Blend params of target net with params from the model
|
||||
:param tau:
|
||||
"""
|
||||
assert isinstance(tau, float)
|
||||
assert 0.0 < tau <= 1.0
|
||||
model_state = self.model.state_dict()
|
||||
target_state = self.target_model.state_dict()
|
||||
for grad_index, grad in model_state.items():
|
||||
target_state[grad_index].copy_((1 - tau) * target_state[grad_index] + tau * grad)
|
||||
self.target_model.load_state_dict(target_state)
|
3
rltorch/network/__init__.py
Normal file
3
rltorch/network/__init__.py
Normal file
|
@ -0,0 +1,3 @@
|
|||
from .Network import *
|
||||
from .NoisyLinear import *
|
||||
from .TargetNetwork import *
|
16
rltorch/seed.py
Normal file
16
rltorch/seed.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
from os import environ
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
|
||||
def set_seed(SEED):
|
||||
# Set `PYTHONHASHSEED` environment variable at a fixed value
|
||||
environ['PYTHONHASHSEED'] = str(SEED)
|
||||
|
||||
np.random.seed(SEED)
|
||||
random.seed(SEED)
|
||||
|
||||
# Pytorch
|
||||
torch.manual_seed(SEED)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
15
setup.py
Normal file
15
setup.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
"""
|
||||
rltorch stands for Reinforcement Learning Torch -- RL library built on top of PyTorch
|
||||
"""
|
||||
import setuptools
|
||||
|
||||
|
||||
setuptools.setup(
|
||||
name="rltorch",
|
||||
author="Brandon Rozek",
|
||||
author_email="rozekbrandon@gmail.com",
|
||||
license='MIT',
|
||||
description="Reinforcement Learning Framework for PyTorch",
|
||||
version="0.1",
|
||||
packages=setuptools.find_packages(),
|
||||
)
|
Loading…
Reference in a new issue