Merge branch 'master' of https://github.com/Brandon-Rozek/rltorch
# Conflicts: # rltorch/agents/QEPAgent.py
This commit is contained in:
		
						commit
						9d32a9edd1
					
				
					 4 changed files with 160 additions and 10 deletions
				
			
		| 
						 | 
					@ -4,6 +4,7 @@ import torch
 | 
				
			||||||
import torch.nn.functional as F
 | 
					import torch.nn.functional as F
 | 
				
			||||||
from copy import deepcopy
 | 
					from copy import deepcopy
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from pathlib import Path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class DQNAgent:
 | 
					class DQNAgent:
 | 
				
			||||||
    def __init__(self, net , memory, config, target_net = None, logger = None):
 | 
					    def __init__(self, net , memory, config, target_net = None, logger = None):
 | 
				
			||||||
| 
						 | 
					@ -12,6 +13,12 @@ class DQNAgent:
 | 
				
			||||||
        self.memory = memory
 | 
					        self.memory = memory
 | 
				
			||||||
        self.config = deepcopy(config)
 | 
					        self.config = deepcopy(config)
 | 
				
			||||||
        self.logger = logger
 | 
					        self.logger = logger
 | 
				
			||||||
 | 
					    def save(self, file_location):
 | 
				
			||||||
 | 
					        torch.save(self.net.model.state_dict(), file_location)
 | 
				
			||||||
 | 
					    def load(self, file_location):
 | 
				
			||||||
 | 
					        self.net.model.state_dict(torch.load(file_location))
 | 
				
			||||||
 | 
					        self.net.model.to(self.net.device)
 | 
				
			||||||
 | 
					        self.target_net.sync()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def learn(self, logger = None):
 | 
					    def learn(self, logger = None):
 | 
				
			||||||
        if len(self.memory) < self.config['batch_size']:
 | 
					        if len(self.memory) < self.config['batch_size']:
 | 
				
			||||||
| 
						 | 
					@ -57,8 +64,10 @@ class DQNAgent:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # If we're sampling by TD error, multiply loss by a importance weight which helps decrease overfitting
 | 
					        # If we're sampling by TD error, multiply loss by a importance weight which helps decrease overfitting
 | 
				
			||||||
        if (isinstance(self.memory, M.PrioritizedReplayMemory)):
 | 
					        if (isinstance(self.memory, M.PrioritizedReplayMemory)):
 | 
				
			||||||
 | 
					            # loss = (torch.as_tensor(importance_weights, device = self.net.device) * F.smooth_l1_loss(obtained_values, expected_values, reduction = 'none').squeeze(1)).mean()
 | 
				
			||||||
             loss = (torch.as_tensor(importance_weights, device = self.net.device) * ((obtained_values - expected_values)**2).squeeze(1)).mean()
 | 
					             loss = (torch.as_tensor(importance_weights, device = self.net.device) * ((obtained_values - expected_values)**2).squeeze(1)).mean()
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
 | 
					            # loss = F.smooth_l1_loss(obtained_values, expected_values)
 | 
				
			||||||
            loss = F.mse_loss(obtained_values, expected_values)
 | 
					            loss = F.mse_loss(obtained_values, expected_values)
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        if self.logger is not None:
 | 
					        if self.logger is not None:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -21,8 +21,20 @@ class QEPAgent:
 | 
				
			||||||
        self.logger = logger
 | 
					        self.logger = logger
 | 
				
			||||||
        self.policy_skip = 4
 | 
					        self.policy_skip = 4
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 | 
					    def save(self, file_location):
 | 
				
			||||||
 | 
					        torch.save({
 | 
				
			||||||
 | 
					            'policy': self.policy_net.model.state_dict(),
 | 
				
			||||||
 | 
					            'value': self.value_net.model.state_dict()
 | 
				
			||||||
 | 
					            }, file_location)
 | 
				
			||||||
 | 
					    def load(self, file_location):
 | 
				
			||||||
 | 
					        checkpoint = torch.load(file_location)
 | 
				
			||||||
 | 
					        self.value_net.model.state_dict(checkpoint['value'])
 | 
				
			||||||
 | 
					        self.value_net.model.to(self.value_net.device)
 | 
				
			||||||
 | 
					        self.policy_net.model.state_dict(checkpoint['policy'])
 | 
				
			||||||
 | 
					        self.policy_net.model.to(self.policy_net.device)
 | 
				
			||||||
 | 
					        self.target_net.sync()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def fitness(self, policy_net, value_net, state_batch):
 | 
					    def fitness(self, policy_net, value_net, state_batch):
 | 
				
			||||||
        # print("Worker started")
 | 
					 | 
				
			||||||
        batch_size = len(state_batch)
 | 
					        batch_size = len(state_batch)
 | 
				
			||||||
        action_probabilities = policy_net(state_batch)
 | 
					        action_probabilities = policy_net(state_batch)
 | 
				
			||||||
        action_size = action_probabilities.shape[1]
 | 
					        action_size = action_probabilities.shape[1]
 | 
				
			||||||
| 
						 | 
					@ -44,8 +56,8 @@ class QEPAgent:
 | 
				
			||||||
        value_importance = 1 - entropy_importance
 | 
					        value_importance = 1 - entropy_importance
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        # entropy_loss = (action_probabilities * torch.log2(action_probabilities)).sum(1) # Standard entropy loss from information theory
 | 
					        # entropy_loss = (action_probabilities * torch.log2(action_probabilities)).sum(1) # Standard entropy loss from information theory
 | 
				
			||||||
        entropy_loss = (action_probabilities - torch.tensor(1 / action_size).repeat(len(state_batch), action_size)).abs().sum(1)
 | 
					        entropy_loss = (action_probabilities - torch.tensor(1 / action_size, device = state_batch.device).repeat(len(state_batch), action_size)).abs().sum(1)
 | 
				
			||||||
        # print("END WORKER")
 | 
					        
 | 
				
			||||||
        return (entropy_importance * entropy_loss - value_importance * obtained_values).mean().item()
 | 
					        return (entropy_importance * entropy_loss - value_importance * obtained_values).mean().item()
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -119,7 +131,6 @@ class QEPAgent:
 | 
				
			||||||
          self.policy_skip -= 1
 | 
					          self.policy_skip -= 1
 | 
				
			||||||
          return
 | 
					          return
 | 
				
			||||||
        self.policy_skip = 4
 | 
					        self.policy_skip = 4
 | 
				
			||||||
 | 
					 | 
				
			||||||
        if self.target_value_net is not None:
 | 
					        if self.target_value_net is not None:
 | 
				
			||||||
          self.policy_net.calc_gradients(self.target_value_net, state_batch)
 | 
					          self.policy_net.calc_gradients(self.target_value_net, state_batch)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										6
									
								
								rltorch/env/simulate.py
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										6
									
								
								rltorch/env/simulate.py
									
										
									
									
										vendored
									
									
								
							| 
						 | 
					@ -17,7 +17,7 @@ def simulateEnvEps(env, actor, config, total_episodes = 1, memory = None, logger
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if episode % config['print_stat_n_eps'] == 0:
 | 
					    if episode % config['print_stat_n_eps'] == 0:
 | 
				
			||||||
      print("episode: {}/{}, score: {}"
 | 
					      print("episode: {}/{}, score: {}"
 | 
				
			||||||
        .format(episode, total_episodes, episode_reward))
 | 
					        .format(episode, total_episodes, episode_reward), flush=True)
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    if logger is not None:
 | 
					    if logger is not None:
 | 
				
			||||||
      logger.append(name + '/EpisodeReward', episode_reward)
 | 
					      logger.append(name + '/EpisodeReward', episode_reward)
 | 
				
			||||||
| 
						 | 
					@ -51,7 +51,7 @@ class EnvironmentRunSync():
 | 
				
			||||||
      if done:
 | 
					      if done:
 | 
				
			||||||
        if self.episode_num % self.config['print_stat_n_eps'] == 0:
 | 
					        if self.episode_num % self.config['print_stat_n_eps'] == 0:
 | 
				
			||||||
          print("episode: {}/{}, score: {}"
 | 
					          print("episode: {}/{}, score: {}"
 | 
				
			||||||
            .format(self.episode_num, self.config['total_training_episodes'], self.episode_reward))
 | 
					            .format(self.episode_num, self.config['total_training_episodes'], self.episode_reward), flush=True)
 | 
				
			||||||
          
 | 
					          
 | 
				
			||||||
        if self.logwriter is not None:
 | 
					        if self.logwriter is not None:
 | 
				
			||||||
          logger.append(self.name + '/EpisodeReward', self.episode_reward)
 | 
					          logger.append(self.name + '/EpisodeReward', self.episode_reward)
 | 
				
			||||||
| 
						 | 
					@ -92,7 +92,7 @@ class EnvironmentEpisodeSync():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if self.episode_num % self.config['print_stat_n_eps'] == 0:
 | 
					    if self.episode_num % self.config['print_stat_n_eps'] == 0:
 | 
				
			||||||
      print("episode: {}/{}, score: {}"
 | 
					      print("episode: {}/{}, score: {}"
 | 
				
			||||||
        .format(self.episode_num, self.config['total_training_episodes'], episodeReward))
 | 
					        .format(self.episode_num, self.config['total_training_episodes'], episodeReward), flush=True)
 | 
				
			||||||
          
 | 
					          
 | 
				
			||||||
    if self.logwriter is not None:
 | 
					    if self.logwriter is not None:
 | 
				
			||||||
      logger.append(self.name + '/EpisodeReward', episodeReward)
 | 
					      logger.append(self.name + '/EpisodeReward', episodeReward)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										130
									
								
								rltorch/env/wrappers.py
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										130
									
								
								rltorch/env/wrappers.py
									
										
									
									
										vendored
									
									
								
							| 
						 | 
					@ -3,6 +3,111 @@ import torch
 | 
				
			||||||
from gym import spaces
 | 
					from gym import spaces
 | 
				
			||||||
import cv2
 | 
					import cv2
 | 
				
			||||||
from collections import deque
 | 
					from collections import deque
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class EpisodicLifeEnv(gym.Wrapper):
 | 
				
			||||||
 | 
					    def __init__(self, env=None):
 | 
				
			||||||
 | 
					        """Make end-of-life == end-of-episode, but only reset on true game over.
 | 
				
			||||||
 | 
					        Done by DeepMind for the DQN and co. since it helps value estimation.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        super(EpisodicLifeEnv, self).__init__(env)
 | 
				
			||||||
 | 
					        self.lives = 0
 | 
				
			||||||
 | 
					        self.was_real_done = True
 | 
				
			||||||
 | 
					        self.was_real_reset = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def step(self, action):
 | 
				
			||||||
 | 
					        obs, reward, done, info = self.env.step(action)
 | 
				
			||||||
 | 
					        self.was_real_done = done
 | 
				
			||||||
 | 
					        # check current lives, make loss of life terminal,
 | 
				
			||||||
 | 
					        # then update lives to handle bonus lives
 | 
				
			||||||
 | 
					        lives = self.env.unwrapped.ale.lives()
 | 
				
			||||||
 | 
					        if lives < self.lives and lives > 0:
 | 
				
			||||||
 | 
					            # for Qbert somtimes we stay in lives == 0 condtion for a few frames
 | 
				
			||||||
 | 
					            # so its important to keep lives > 0, so that we only reset once
 | 
				
			||||||
 | 
					            # the environment advertises done.
 | 
				
			||||||
 | 
					            done = True
 | 
				
			||||||
 | 
					        self.lives = lives
 | 
				
			||||||
 | 
					        return obs, reward, done, info
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def reset(self):
 | 
				
			||||||
 | 
					        """Reset only when lives are exhausted.
 | 
				
			||||||
 | 
					        This way all states are still reachable even though lives are episodic,
 | 
				
			||||||
 | 
					        and the learner need not know about any of this behind-the-scenes.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        if self.was_real_done:
 | 
				
			||||||
 | 
					            obs = self.env.reset()
 | 
				
			||||||
 | 
					            self.was_real_reset = True
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # no-op step to advance from terminal/lost life state
 | 
				
			||||||
 | 
					            obs, _, _, _ = self.env.step(0)
 | 
				
			||||||
 | 
					            self.was_real_reset = False
 | 
				
			||||||
 | 
					        self.lives = self.env.unwrapped.ale.lives()
 | 
				
			||||||
 | 
					        return obs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class NoopResetEnv(gym.Wrapper):
 | 
				
			||||||
 | 
					    def __init__(self, env=None, noop_max=30):
 | 
				
			||||||
 | 
					        """Sample initial states by taking random number of no-ops on reset.
 | 
				
			||||||
 | 
					        No-op is assumed to be action 0.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        super(NoopResetEnv, self).__init__(env)
 | 
				
			||||||
 | 
					        self.noop_max = noop_max
 | 
				
			||||||
 | 
					        self.override_num_noops = None
 | 
				
			||||||
 | 
					        assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def step(self, action):
 | 
				
			||||||
 | 
					        return self.env.step(action)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def reset(self):
 | 
				
			||||||
 | 
					        """ Do no-op action for a number of steps in [1, noop_max]."""
 | 
				
			||||||
 | 
					        self.env.reset()
 | 
				
			||||||
 | 
					        if self.override_num_noops is not None:
 | 
				
			||||||
 | 
					            noops = self.override_num_noops
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            noops = np.random.randint(1, self.noop_max + 1)
 | 
				
			||||||
 | 
					        assert noops > 0
 | 
				
			||||||
 | 
					        obs = None
 | 
				
			||||||
 | 
					        for _ in range(noops):
 | 
				
			||||||
 | 
					            obs, _, done, _ = self.env.step(0)
 | 
				
			||||||
 | 
					            if done:
 | 
				
			||||||
 | 
					                obs = self.env.reset()
 | 
				
			||||||
 | 
					        return obs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class MaxAndSkipEnv(gym.Wrapper):
 | 
				
			||||||
 | 
					    def __init__(self, env=None, skip=4):
 | 
				
			||||||
 | 
					        """Return only every `skip`-th frame"""
 | 
				
			||||||
 | 
					        super(MaxAndSkipEnv, self).__init__(env)
 | 
				
			||||||
 | 
					        # most recent raw observations (for max pooling across time steps)
 | 
				
			||||||
 | 
					        self._obs_buffer = deque(maxlen=2)
 | 
				
			||||||
 | 
					        self._skip = skip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def step(self, action):
 | 
				
			||||||
 | 
					        total_reward = 0.0
 | 
				
			||||||
 | 
					        done = None
 | 
				
			||||||
 | 
					        for _ in range(self._skip):
 | 
				
			||||||
 | 
					            obs, reward, done, info = self.env.step(action)
 | 
				
			||||||
 | 
					            self._obs_buffer.append(obs)
 | 
				
			||||||
 | 
					            total_reward += reward
 | 
				
			||||||
 | 
					            if done:
 | 
				
			||||||
 | 
					                break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        max_frame = np.max(np.stack(self._obs_buffer), axis=0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return max_frame, total_reward, done, info
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def reset(self):
 | 
				
			||||||
 | 
					        """Clear past frame buffer and init. to first obs. from inner env."""
 | 
				
			||||||
 | 
					        self._obs_buffer.clear()
 | 
				
			||||||
 | 
					        obs = self.env.reset()
 | 
				
			||||||
 | 
					        self._obs_buffer.append(obs)
 | 
				
			||||||
 | 
					        return obs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ClippedRewardsWrapper(gym.RewardWrapper):
 | 
				
			||||||
 | 
					    def reward(self, reward):
 | 
				
			||||||
 | 
					        """Change all the positive rewards to 1, negative to -1 and keep zero."""
 | 
				
			||||||
 | 
					        return np.sign(reward)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Mostly derived from OpenAI baselines
 | 
					# Mostly derived from OpenAI baselines
 | 
				
			||||||
class FireResetEnv(gym.Wrapper):
 | 
					class FireResetEnv(gym.Wrapper):
 | 
				
			||||||
| 
						 | 
					@ -127,3 +232,28 @@ class TorchWrap(gym.Wrapper):
 | 
				
			||||||
  def _convert(self, frame):
 | 
					  def _convert(self, frame):
 | 
				
			||||||
    frame = torch.from_numpy(frame).unsqueeze(0).float()
 | 
					    frame = torch.from_numpy(frame).unsqueeze(0).float()
 | 
				
			||||||
    return frame
 | 
					    return frame
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class ProcessFrame84(gym.ObservationWrapper):
 | 
				
			||||||
 | 
					    def __init__(self, env=None):
 | 
				
			||||||
 | 
					        super(ProcessFrame84, self).__init__(env)
 | 
				
			||||||
 | 
					        self.observation_space = spaces.Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def observation(self, obs):
 | 
				
			||||||
 | 
					        return ProcessFrame84.process(obs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @staticmethod
 | 
				
			||||||
 | 
					    def process(frame):
 | 
				
			||||||
 | 
					        if frame.size == 210 * 160 * 3:
 | 
				
			||||||
 | 
					            img = np.reshape(frame, [210, 160, 3]).astype(np.float32)
 | 
				
			||||||
 | 
					        elif frame.size == 250 * 160 * 3:
 | 
				
			||||||
 | 
					            img = np.reshape(frame, [250, 160, 3]).astype(np.float32)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            assert False, "Unknown resolution."
 | 
				
			||||||
 | 
					        img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:, :, 2] * 0.114
 | 
				
			||||||
 | 
					        resized_screen = cv2.resize(img, (84, 110), interpolation=cv2.INTER_AREA)
 | 
				
			||||||
 | 
					        x_t = resized_screen[18:102, :]
 | 
				
			||||||
 | 
					        x_t = np.reshape(x_t, [84, 84])
 | 
				
			||||||
 | 
					        return x_t.astype(np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue