Added new OpenAI Baseline Wrappers
This commit is contained in:
		
							parent
							
								
									6d3a78cd20
								
							
						
					
					
						commit
						912e3d42cb
					
				
					 1 changed files with 131 additions and 1 deletions
				
			
		
							
								
								
									
										132
									
								
								rltorch/env/wrappers.py
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										132
									
								
								rltorch/env/wrappers.py
									
										
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -3,6 +3,111 @@ import torch
 | 
			
		|||
from gym import spaces
 | 
			
		||||
import cv2
 | 
			
		||||
from collections import deque
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
class EpisodicLifeEnv(gym.Wrapper):
 | 
			
		||||
    def __init__(self, env=None):
 | 
			
		||||
        """Make end-of-life == end-of-episode, but only reset on true game over.
 | 
			
		||||
        Done by DeepMind for the DQN and co. since it helps value estimation.
 | 
			
		||||
        """
 | 
			
		||||
        super(EpisodicLifeEnv, self).__init__(env)
 | 
			
		||||
        self.lives = 0
 | 
			
		||||
        self.was_real_done = True
 | 
			
		||||
        self.was_real_reset = False
 | 
			
		||||
 | 
			
		||||
    def step(self, action):
 | 
			
		||||
        obs, reward, done, info = self.env.step(action)
 | 
			
		||||
        self.was_real_done = done
 | 
			
		||||
        # check current lives, make loss of life terminal,
 | 
			
		||||
        # then update lives to handle bonus lives
 | 
			
		||||
        lives = self.env.unwrapped.ale.lives()
 | 
			
		||||
        if lives < self.lives and lives > 0:
 | 
			
		||||
            # for Qbert somtimes we stay in lives == 0 condtion for a few frames
 | 
			
		||||
            # so its important to keep lives > 0, so that we only reset once
 | 
			
		||||
            # the environment advertises done.
 | 
			
		||||
            done = True
 | 
			
		||||
        self.lives = lives
 | 
			
		||||
        return obs, reward, done, info
 | 
			
		||||
 | 
			
		||||
    def reset(self):
 | 
			
		||||
        """Reset only when lives are exhausted.
 | 
			
		||||
        This way all states are still reachable even though lives are episodic,
 | 
			
		||||
        and the learner need not know about any of this behind-the-scenes.
 | 
			
		||||
        """
 | 
			
		||||
        if self.was_real_done:
 | 
			
		||||
            obs = self.env.reset()
 | 
			
		||||
            self.was_real_reset = True
 | 
			
		||||
        else:
 | 
			
		||||
            # no-op step to advance from terminal/lost life state
 | 
			
		||||
            obs, _, _, _ = self.env.step(0)
 | 
			
		||||
            self.was_real_reset = False
 | 
			
		||||
        self.lives = self.env.unwrapped.ale.lives()
 | 
			
		||||
        return obs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class NoopResetEnv(gym.Wrapper):
 | 
			
		||||
    def __init__(self, env=None, noop_max=30):
 | 
			
		||||
        """Sample initial states by taking random number of no-ops on reset.
 | 
			
		||||
        No-op is assumed to be action 0.
 | 
			
		||||
        """
 | 
			
		||||
        super(NoopResetEnv, self).__init__(env)
 | 
			
		||||
        self.noop_max = noop_max
 | 
			
		||||
        self.override_num_noops = None
 | 
			
		||||
        assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
 | 
			
		||||
 | 
			
		||||
    def step(self, action):
 | 
			
		||||
        return self.env.step(action)
 | 
			
		||||
 | 
			
		||||
    def reset(self):
 | 
			
		||||
        """ Do no-op action for a number of steps in [1, noop_max]."""
 | 
			
		||||
        self.env.reset()
 | 
			
		||||
        if self.override_num_noops is not None:
 | 
			
		||||
            noops = self.override_num_noops
 | 
			
		||||
        else:
 | 
			
		||||
            noops = np.random.randint(1, self.noop_max + 1)
 | 
			
		||||
        assert noops > 0
 | 
			
		||||
        obs = None
 | 
			
		||||
        for _ in range(noops):
 | 
			
		||||
            obs, _, done, _ = self.env.step(0)
 | 
			
		||||
            if done:
 | 
			
		||||
                obs = self.env.reset()
 | 
			
		||||
        return obs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MaxAndSkipEnv(gym.Wrapper):
 | 
			
		||||
    def __init__(self, env=None, skip=4):
 | 
			
		||||
        """Return only every `skip`-th frame"""
 | 
			
		||||
        super(MaxAndSkipEnv, self).__init__(env)
 | 
			
		||||
        # most recent raw observations (for max pooling across time steps)
 | 
			
		||||
        self._obs_buffer = deque(maxlen=2)
 | 
			
		||||
        self._skip = skip
 | 
			
		||||
 | 
			
		||||
    def step(self, action):
 | 
			
		||||
        total_reward = 0.0
 | 
			
		||||
        done = None
 | 
			
		||||
        for _ in range(self._skip):
 | 
			
		||||
            obs, reward, done, info = self.env.step(action)
 | 
			
		||||
            self._obs_buffer.append(obs)
 | 
			
		||||
            total_reward += reward
 | 
			
		||||
            if done:
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
        max_frame = np.max(np.stack(self._obs_buffer), axis=0)
 | 
			
		||||
 | 
			
		||||
        return max_frame, total_reward, done, info
 | 
			
		||||
 | 
			
		||||
    def reset(self):
 | 
			
		||||
        """Clear past frame buffer and init. to first obs. from inner env."""
 | 
			
		||||
        self._obs_buffer.clear()
 | 
			
		||||
        obs = self.env.reset()
 | 
			
		||||
        self._obs_buffer.append(obs)
 | 
			
		||||
        return obs
 | 
			
		||||
 | 
			
		||||
class ClippedRewardsWrapper(gym.RewardWrapper):
 | 
			
		||||
    def reward(self, reward):
 | 
			
		||||
        """Change all the positive rewards to 1, negative to -1 and keep zero."""
 | 
			
		||||
        return np.sign(reward)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Mostly derived from OpenAI baselines
 | 
			
		||||
class FireResetEnv(gym.Wrapper):
 | 
			
		||||
| 
						 | 
				
			
			@ -126,4 +231,29 @@ class TorchWrap(gym.Wrapper):
 | 
			
		|||
 | 
			
		||||
  def _convert(self, frame):
 | 
			
		||||
    frame = torch.from_numpy(frame).unsqueeze(0).float()
 | 
			
		||||
    return frame
 | 
			
		||||
    return frame
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ProcessFrame84(gym.ObservationWrapper):
 | 
			
		||||
    def __init__(self, env=None):
 | 
			
		||||
        super(ProcessFrame84, self).__init__(env)
 | 
			
		||||
        self.observation_space = spaces.Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
 | 
			
		||||
 | 
			
		||||
    def observation(self, obs):
 | 
			
		||||
        return ProcessFrame84.process(obs)
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def process(frame):
 | 
			
		||||
        if frame.size == 210 * 160 * 3:
 | 
			
		||||
            img = np.reshape(frame, [210, 160, 3]).astype(np.float32)
 | 
			
		||||
        elif frame.size == 250 * 160 * 3:
 | 
			
		||||
            img = np.reshape(frame, [250, 160, 3]).astype(np.float32)
 | 
			
		||||
        else:
 | 
			
		||||
            assert False, "Unknown resolution."
 | 
			
		||||
        img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:, :, 2] * 0.114
 | 
			
		||||
        resized_screen = cv2.resize(img, (84, 110), interpolation=cv2.INTER_AREA)
 | 
			
		||||
        x_t = resized_screen[18:102, :]
 | 
			
		||||
        x_t = np.reshape(x_t, [84, 84])
 | 
			
		||||
        return x_t.astype(np.uint8)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue