Added Evolutionary Strategies Network and added more example scripts

This commit is contained in:
Brandon Rozek 2019-02-27 09:52:28 -05:00
parent 26084d4c7c
commit 76a044ace9
14 changed files with 695 additions and 41 deletions

161
examples/acrobot_a2c.py Normal file
View file

@ -0,0 +1,161 @@
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import rltorch
import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
import signal
from copy import deepcopy
class Value(nn.Module):
def __init__(self, state_size):
super(Value, self).__init__()
self.state_size = state_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, 1)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = self.fc3(x)
return x
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, action_size)
# self.fc3_norm = nn.LayerNorm(action_size)
# self.value_fc = rn.NoisyLinear(64, 64)
# self.value_fc_norm = nn.LayerNorm(64)
# self.value = rn.NoisyLinear(64, 1)
# self.advantage_fc = rn.NoisyLinear(64, 64)
# self.advantage_fc_norm = nn.LayerNorm(64)
# self.advantage = rn.NoisyLinear(64, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.fc3(x), dim = 1)
# state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
# state_value = self.value(state_value)
# advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
# advantage = self.advantage(advantage)
# x = F.softmax(state_value + advantage - advantage.mean(), dim = 1)
return x
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 500
config['total_evaluation_episodes'] = 10
config['batch_size'] = 32
config['learning_rate'] = 1e-3
config['target_sync_tau'] = 1e-1
config['discount_rate'] = 0.99
config['replay_skip'] = 0
# How many episodes between printing out the episode stats
config['print_stat_n_eps'] = 1
config['disable_cuda'] = False
def train(runner, agent, config, logger = None, logwriter = None):
finished = False
last_episode_num = 1
while not finished:
runner.run(config['replay_skip'] + 1)
agent.learn()
if logwriter is not None:
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
policy_net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device = device, name = "Policy")
value_net = rn.Network(Value(state_size),
torch.optim.Adam, config, device = device, name = "DQN")
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, memory, device = device)
# Agent is what performs the training
# agent = rltorch.agents.REINFORCEAgent(net, memory, config, target_net = target_net, logger = logger)
agent = rltorch.agents.A2CSingleAgent(policy_net, value_net, memory, config, logger = logger)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore

120
examples/acrobot_es.py Normal file
View file

@ -0,0 +1,120 @@
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
import rltorch
import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
self.action_prob = nn.Linear(125, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 50
config['total_evaluation_episodes'] = 5
config['batch_size'] = 32
config['learning_rate'] = 1e-1
config['target_sync_tau'] = 1e-1
config['discount_rate'] = 0.99
config['replay_skip'] = 0
# How many episodes between printing out the episode stats
config['print_stat_n_eps'] = 1
config['disable_cuda'] = False
def train(env, net, actor, config, logger = None, logwriter = None):
finished = False
episode_num = 1
while not finished:
rltorch.env.simulateEnvEps(env, actor, config, logger = logger, name = "Training")
episode_num += 1
net.calc_gradients()
net.step()
# When the episode number changes, log network paramters
if logwriter is not None:
net.log_named_parameters()
logwriter.write(logger)
finished = episode_num > config['total_training_episodes']
def fitness(model):
env = gym.make("Acrobot-v1")
state = torch.from_numpy(env.reset()).float().unsqueeze(0)
total_reward = 0
done = False
while not done:
action_probabilities = model(state)
distribution = Categorical(action_probabilities)
action = distribution.sample().item()
next_state, reward, done, _ = env.step(action)
total_reward += reward
state = torch.from_numpy(next_state).float().unsqueeze(0)
return total_reward
if __name__ == "__main__":
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
# logwriter = rltorch.log.LogWriter(logger, SummaryWriter())
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 100, fitness, config, device = device, name = "ES", logger = logger)
net.model.share_memory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(net, action_size, device = device)
print("Training...")
train(env, net, actor, config, logger = logger, logwriter = logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore

161
examples/acrobot_ppo.py Normal file
View file

@ -0,0 +1,161 @@
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import rltorch
import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
import signal
from copy import deepcopy
class Value(nn.Module):
def __init__(self, state_size):
super(Value, self).__init__()
self.state_size = state_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, 1)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = self.fc3(x)
return x
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, action_size)
# self.fc3_norm = nn.LayerNorm(action_size)
# self.value_fc = rn.NoisyLinear(64, 64)
# self.value_fc_norm = nn.LayerNorm(64)
# self.value = rn.NoisyLinear(64, 1)
# self.advantage_fc = rn.NoisyLinear(64, 64)
# self.advantage_fc_norm = nn.LayerNorm(64)
# self.advantage = rn.NoisyLinear(64, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.fc3(x), dim = 1)
# state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
# state_value = self.value(state_value)
# advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
# advantage = self.advantage(advantage)
# x = F.softmax(state_value + advantage - advantage.mean(), dim = 1)
return x
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 500
config['total_evaluation_episodes'] = 10
config['batch_size'] = 32
config['learning_rate'] = 1e-3
config['target_sync_tau'] = 1e-1
config['discount_rate'] = 0.99
config['replay_skip'] = 0
# How many episodes between printing out the episode stats
config['print_stat_n_eps'] = 1
config['disable_cuda'] = False
def train(runner, agent, config, logger = None, logwriter = None):
finished = False
last_episode_num = 1
while not finished:
runner.run(config['replay_skip'] + 1)
agent.learn()
if logwriter is not None:
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
policy_net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device = device, name = "Policy")
value_net = rn.Network(Value(state_size),
torch.optim.Adam, config, device = device, name = "DQN")
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, memory, device = device)
# Agent is what performs the training
# agent = rltorch.agents.REINFORCEAgent(net, memory, config, target_net = target_net, logger = logger)
agent = rltorch.agents.PPOAgent(policy_net, value_net, memory, config, logger = logger)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore

View file

@ -7,9 +7,10 @@ import rltorch
import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import ArgMaxSelector
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
from copy import deepcopy
class Value(nn.Module):
def __init__(self, state_size, action_size):
@ -17,16 +18,16 @@ class Value(nn.Module):
self.state_size = state_size
self.action_size = action_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc1 = rn.NoisyLinear(state_size, 255)
self.fc_norm = nn.LayerNorm(255)
self.value_fc = rn.NoisyLinear(64, 64)
self.value_fc_norm = nn.LayerNorm(64)
self.value = rn.NoisyLinear(64, 1)
self.value_fc = rn.NoisyLinear(255, 255)
self.value_fc_norm = nn.LayerNorm(255)
self.value = rn.NoisyLinear(255, 1)
self.advantage_fc = rn.NoisyLinear(64, 64)
self.advantage_fc_norm = nn.LayerNorm(64)
self.advantage = rn.NoisyLinear(64, action_size)
self.advantage_fc = rn.NoisyLinear(255, 255)
self.advantage_fc_norm = nn.LayerNorm(255)
self.advantage = rn.NoisyLinear(255, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
@ -42,12 +43,32 @@ class Value(nn.Module):
return x
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
self.action_prob = nn.Linear(125, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 50
config['total_evaluation_episodes'] = 10
config['total_evaluation_episodes'] = 5
config['batch_size'] = 32
config['learning_rate'] = 1e-3
config['target_sync_tau'] = 1e-1
@ -65,28 +86,24 @@ config['prioritized_replay_sampling_priority'] = 0.6
# 1 - Lower the importance of high losses
# Should ideally start from 0 and move your way to 1 to prevent overfitting
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
def train(runner, agent, config, logger = None, logwriter = None):
finished = False
last_episode_num = 1
while not finished:
runner.run()
runner.run(config['replay_skip'] + 1)
agent.learn()
runner.join()
# When the episode number changes, log network paramters
with runner.episode_num.get_lock():
if logwriter is not None and last_episode_num < runner.episode_num.value:
last_episode_num = runner.episode_num.value
agent.net.log_named_parameters()
if logwriter is not None:
logwriter.write(logger)
finished = runner.episode_num.value > config['total_training_episodes']
if logwriter is not None:
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
@ -104,24 +121,29 @@ if __name__ == "__main__":
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device = device, name = "DQN")
target_net = rn.TargetNetwork(net, device = device)
net.model.share_memory()
config2 = deepcopy(config)
config2['learning_rate'] = 0.01
policy_net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 500, None, config2, sigma = 0.1, device = device, name = "ES", logger = logger)
value_net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device = device, name = "DQN", logger = logger)
target_net = rn.TargetNetwork(value_net, device = device)
value_net.model.share_memory()
target_net.model.share_memory()
# Actor takes a net and uses it to produce actions from given states
actor = ArgMaxSelector(net, action_size, device = device)
actor = StochasticSelector(policy_net, action_size, device = device)
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
# memory = M.ReplayMemory(capacity = config['memory_size'])
# Runner performs a certain number of steps in the environment
runner = rltorch.mp.EnvironmentRun(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
# Agent is what performs the training
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
# agent = TestAgent(policy_net, value_net, memory, config, target_value_net = target_net, logger = logger)
agent = rltorch.agents.QEPAgent(policy_net, value_net, memory, config, target_value_net = target_net, logger = logger)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
@ -132,7 +154,6 @@ if __name__ == "__main__":
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
runner.terminate() # We don't need the extra process anymore
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")

View file

@ -48,7 +48,7 @@ config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 100
config['total_training_episodes'] = 500
config['total_evaluation_episodes'] = 10
config['batch_size'] = 32
config['learning_rate'] = 1e-3

View file

@ -46,8 +46,8 @@ config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 5
config['total_evaluation_episodes'] = 2
config['total_training_episodes'] = 50
config['total_evaluation_episodes'] = 5
config['batch_size'] = 32
config['learning_rate'] = 1e-3
config['target_sync_tau'] = 1e-1