Added PPOAgent and A2CAgent to the agents submodule.
Also made some small changes to how memories are queried
This commit is contained in:
parent
21b820b401
commit
26084d4c7c
8 changed files with 430 additions and 12 deletions
|
@ -10,8 +10,6 @@ class StochasticSelector(ArgMaxSelector):
|
|||
self.model = model
|
||||
self.action_size = action_size
|
||||
self.device = device
|
||||
if not isinstance(memory, rltorch.memory.EpisodeMemory):
|
||||
raise ValueError("Memory must be of instance EpisodeMemory")
|
||||
self.memory = memory
|
||||
def best_act(self, state, log_prob = True):
|
||||
if self.device is not None:
|
||||
|
@ -19,6 +17,6 @@ class StochasticSelector(ArgMaxSelector):
|
|||
action_probabilities = self.model(state)
|
||||
distribution = Categorical(action_probabilities)
|
||||
action = distribution.sample()
|
||||
if log_prob:
|
||||
if log_prob and isinstance(self.memory, rltorch.memory.EpisodeMemory):
|
||||
self.memory.append_log_probs(distribution.log_prob(action))
|
||||
return action.item()
|
73
rltorch/agents/A2CSingleAgent.py
Normal file
73
rltorch/agents/A2CSingleAgent.py
Normal file
|
@ -0,0 +1,73 @@
|
|||
# Deprecated since the idea of the idea shouldn't work without having some sort of "mental model" of the environment
|
||||
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
import rltorch
|
||||
import rltorch.memory as M
|
||||
import collections
|
||||
import random
|
||||
|
||||
class A2CSingleAgent:
|
||||
def __init__(self, policy_net, value_net, memory, config, logger = None):
|
||||
self.policy_net = policy_net
|
||||
self.value_net = value_net
|
||||
self.memory = memory
|
||||
self.config = deepcopy(config)
|
||||
self.logger = logger
|
||||
|
||||
def _discount_rewards(self, rewards):
|
||||
discounted_rewards = torch.zeros_like(rewards)
|
||||
running_add = 0
|
||||
for t in reversed(range(len(rewards))):
|
||||
running_add = running_add * self.config['discount_rate'] + rewards[t]
|
||||
discounted_rewards[t] = running_add
|
||||
|
||||
return discounted_rewards
|
||||
|
||||
|
||||
def learn(self):
|
||||
if len(self.memory) < self.config['batch_size']:
|
||||
return
|
||||
|
||||
episode_batch = self.memory.recall()
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
||||
|
||||
state_batch = torch.cat(state_batch).to(self.value_net.device)
|
||||
reward_batch = torch.tensor(reward_batch).to(self.value_net.device)
|
||||
not_done_batch = ~torch.tensor(done_batch).to(self.value_net.device)
|
||||
next_state_batch = torch.cat(next_state_batch).to(self.value_net.device)
|
||||
log_prob_batch = torch.cat(log_prob_batch).to(self.value_net.device)
|
||||
|
||||
## Value Loss
|
||||
value_loss = F.mse_loss(self._discount_rewards(reward_batch), self.value_net(state_batch[0]))
|
||||
self.value_net.zero_grad()
|
||||
value_loss.backward()
|
||||
self.value_net.step()
|
||||
|
||||
## Policy Loss
|
||||
with torch.no_grad():
|
||||
state_values = self.value_net(state_batch)
|
||||
next_state_values = torch.zeros_like(state_values)
|
||||
next_state_values[not_done_batch] = self.value_net(next_state_batch[not_done_batch])
|
||||
advantages = (reward_batch.unsqueeze(1) + self.config['discount_rate'] * next_state_values) - state_values
|
||||
advantages = advantages.squeeze(1)
|
||||
|
||||
policy_loss = (-log_prob_batch * advantages).sum()
|
||||
|
||||
if self.logger is not None:
|
||||
self.logger.append("Loss/Policy", policy_loss.item())
|
||||
self.logger.append("Loss/Value", value_loss.item())
|
||||
|
||||
|
||||
self.policy_net.zero_grad()
|
||||
policy_loss.backward()
|
||||
self.policy_net.step()
|
||||
|
||||
|
||||
# Memory is irrelevant for future training
|
||||
self.memory.clear()
|
||||
|
||||
|
|
@ -34,27 +34,29 @@ class DQNAgent:
|
|||
next_state_batch = next_state_batch.to(self.net.device)
|
||||
not_done_batch = not_done_batch.to(self.net.device)
|
||||
|
||||
obtained_values = self.net(state_batch).gather(1, action_batch.view(self.config['batch_size'], 1))
|
||||
state_values = self.net(state_batch)
|
||||
obtained_values = state_values.gather(1, action_batch.view(self.config['batch_size'], 1))
|
||||
|
||||
with torch.no_grad():
|
||||
# Use the target net to produce action values for the next state
|
||||
# and the regular net to select the action
|
||||
# That way we decouple the value and action selecting processes (DOUBLE DQN)
|
||||
not_done_size = not_done_batch.sum()
|
||||
next_state_values = torch.zeros_like(state_values, device = self.net.device)
|
||||
if self.target_net is not None:
|
||||
next_state_values = self.target_net(next_state_batch)
|
||||
next_best_action = self.net(next_state_batch).argmax(1)
|
||||
next_state_values[not_done_batch] = self.target_net(next_state_batch[not_done_batch])
|
||||
next_best_action = self.net(next_state_batch[not_done_batch]).argmax(1)
|
||||
else:
|
||||
next_state_values = self.net(next_state_batch)
|
||||
next_best_action = next_state_values.argmax(1)
|
||||
next_state_values[not_done_batch] = self.net(next_state_batch[not_done_batch])
|
||||
next_best_action = next_state_values[not_done_batch].argmax(1)
|
||||
|
||||
best_next_state_value = torch.zeros(self.config['batch_size'], device = self.net.device)
|
||||
best_next_state_value[not_done_batch] = next_state_values.gather(1, next_best_action.view((not_done_size, 1))).squeeze(1)
|
||||
best_next_state_value[not_done_batch] = next_state_values[not_done_batch].gather(1, next_best_action.view((not_done_size, 1))).squeeze(1)
|
||||
|
||||
expected_values = (reward_batch + (self.config['discount_rate'] * best_next_state_value)).unsqueeze(1)
|
||||
|
||||
if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
loss = (torch.as_tensor(importance_weights, device = self.net.device) * (obtained_values - expected_values)**2).mean()
|
||||
loss = (torch.as_tensor(importance_weights, device = self.net.device) * ((obtained_values - expected_values)**2).squeeze(1)).mean()
|
||||
else:
|
||||
loss = F.mse_loss(obtained_values, expected_values)
|
||||
|
||||
|
|
83
rltorch/agents/PPOAgent.py
Normal file
83
rltorch/agents/PPOAgent.py
Normal file
|
@ -0,0 +1,83 @@
|
|||
# Deprecated since the idea of the idea shouldn't work without having some sort of "mental model" of the environment
|
||||
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
import rltorch
|
||||
import rltorch.memory as M
|
||||
import collections
|
||||
import random
|
||||
|
||||
class PPOAgent:
|
||||
def __init__(self, policy_net, value_net, memory, config, logger = None):
|
||||
self.policy_net = policy_net
|
||||
self.old_policy_net = rltorch.network.TargetNetwork(policy_net)
|
||||
self.value_net = value_net
|
||||
self.memory = memory
|
||||
self.config = deepcopy(config)
|
||||
self.logger = logger
|
||||
|
||||
def _discount_rewards(self, rewards):
|
||||
discounted_rewards = torch.zeros_like(rewards)
|
||||
running_add = 0
|
||||
for t in reversed(range(len(rewards))):
|
||||
running_add = running_add * self.config['discount_rate'] + rewards[t]
|
||||
discounted_rewards[t] = running_add
|
||||
|
||||
return discounted_rewards
|
||||
|
||||
|
||||
def learn(self):
|
||||
if len(self.memory) < self.config['batch_size']:
|
||||
return
|
||||
|
||||
episode_batch = self.memory.recall()
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
||||
|
||||
state_batch = torch.cat(state_batch).to(self.value_net.device)
|
||||
action_batch = torch.tensor(action_batch).to(self.value_net.device)
|
||||
reward_batch = torch.tensor(reward_batch).to(self.value_net.device)
|
||||
not_done_batch = ~torch.tensor(done_batch).to(self.value_net.device)
|
||||
next_state_batch = torch.cat(next_state_batch).to(self.value_net.device)
|
||||
log_prob_batch = torch.cat(log_prob_batch).to(self.value_net.device)
|
||||
|
||||
## Value Loss
|
||||
value_loss = F.mse_loss(self._discount_rewards(reward_batch), self.value_net(state_batch[0]))
|
||||
self.value_net.zero_grad()
|
||||
value_loss.backward()
|
||||
self.value_net.step()
|
||||
|
||||
## Policy Loss
|
||||
with torch.no_grad():
|
||||
state_values = self.value_net(state_batch)
|
||||
next_state_values = torch.zeros_like(state_values)
|
||||
next_state_values[not_done_batch] = self.value_net(next_state_batch[not_done_batch])
|
||||
advantages = (reward_batch.unsqueeze(1) + self.config['discount_rate'] * next_state_values) - state_values
|
||||
advantages = advantages.squeeze(1)
|
||||
|
||||
action_probabilities = self.old_policy_net(state_batch).detach()
|
||||
distributions = list(map(Categorical, action_probabilities))
|
||||
old_log_probs = torch.stack(list(map(lambda distribution, action: distribution.log_prob(action), distributions, action_batch)))
|
||||
|
||||
policy_ratio = torch.exp(log_prob_batch - old_log_probs) # Equivalent to (log_prob / old_log_prob)
|
||||
policy_loss1 = policy_ratio * advantages
|
||||
policy_loss2 = policy_ratio.clamp(min = 0.8, max = 1.2) * advantages # From original paper
|
||||
policy_loss = -torch.min(policy_loss1, policy_loss2).sum()
|
||||
|
||||
if self.logger is not None:
|
||||
self.logger.append("Loss/Policy", policy_loss.item())
|
||||
self.logger.append("Loss/Value", value_loss.item())
|
||||
|
||||
|
||||
self.old_policy_net.sync()
|
||||
self.policy_net.zero_grad()
|
||||
policy_loss.backward()
|
||||
self.policy_net.step()
|
||||
|
||||
|
||||
# Memory is irrelevant for future training
|
||||
self.memory.clear()
|
||||
|
||||
|
|
@ -31,7 +31,7 @@ class REINFORCEAgent:
|
|||
discount_reward_batch = self._discount_rewards(torch.tensor(reward_batch))
|
||||
log_prob_batch = torch.cat(log_prob_batch)
|
||||
|
||||
policy_loss = (-1 * log_prob_batch * discount_reward_batch).sum()
|
||||
policy_loss = (-log_prob_batch * discount_reward_batch).sum()
|
||||
|
||||
if self.logger is not None:
|
||||
self.logger.append("Loss", policy_loss.item())
|
||||
|
|
260
rltorch/agents/_A2CSingleAgent.py
Normal file
260
rltorch/agents/_A2CSingleAgent.py
Normal file
|
@ -0,0 +1,260 @@
|
|||
# Deprecated since the idea of the idea shouldn't work without having some sort of "mental model" of the environment
|
||||
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
import rltorch
|
||||
import rltorch.memory as M
|
||||
import collections
|
||||
import random
|
||||
|
||||
class A2CSingleAgent:
|
||||
def __init__(self, policy_net, value_net, memory, config, target_value_net = None, logger = None):
|
||||
self.policy_net = policy_net
|
||||
self.value_net = value_net
|
||||
self.memory = memory
|
||||
self.config = deepcopy(config)
|
||||
self.target_value_net = target_value_net
|
||||
self.logger = logger
|
||||
|
||||
def learn_value(self):
|
||||
if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
weight_importance = self.config['prioritized_replay_weight_importance']
|
||||
# If it's a scheduler then get the next value by calling next, otherwise just use it's value
|
||||
beta = next(weight_importance) if isinstance(weight_importance, collections.Iterable) else weight_importance
|
||||
minibatch = self.memory.sample(self.config['batch_size'], beta = beta)
|
||||
state_batch, action_batch, reward_batch, next_state_batch, not_done_batch, importance_weights, batch_indexes = M.zip_batch(minibatch, priority = True)
|
||||
else:
|
||||
minibatch = self.memory.sample(self.config['batch_size'])
|
||||
state_batch, action_batch, reward_batch, next_state_batch, not_done_batch = M.zip_batch(minibatch)
|
||||
|
||||
# Send to their appropriate devices
|
||||
state_batch = state_batch.to(self.value_net.device)
|
||||
action_batch = action_batch.to(self.value_net.device)
|
||||
reward_batch = reward_batch.to(self.value_net.device)
|
||||
next_state_batch = next_state_batch.to(self.value_net.device)
|
||||
not_done_batch = not_done_batch.to(self.value_net.device)
|
||||
|
||||
|
||||
## Value Loss
|
||||
state_values = self.value_net(state_batch)
|
||||
obtained_values = state_values.gather(1, action_batch.view(self.config['batch_size'], 1))
|
||||
with torch.no_grad():
|
||||
# Use the target net to produce action values for the next state
|
||||
# and the regular net to select the action
|
||||
# That way we decouple the value and action selecting processes (DOUBLE DQN)
|
||||
not_done_size = not_done_batch.sum()
|
||||
next_state_values = torch.zeros_like(state_values)
|
||||
if self.target_value_net is not None:
|
||||
next_state_values[not_done_batch] = self.target_value_net(next_state_batch[not_done_batch])
|
||||
next_best_action = self.value_net(next_state_batch).argmax(1)
|
||||
else:
|
||||
next_state_values[not_done_batch] = self.value_net(next_state_batch[not_done_batch])
|
||||
next_best_action = next_state_values.argmax(1)
|
||||
|
||||
best_next_state_value = torch.zeros(self.config['batch_size'], device = self.value_net.device)
|
||||
# best_next_state_value[not_done_batch] = next_state_values.gather(1, next_best_action.view((not_done_size, 1))).squeeze(1)
|
||||
best_next_state_value[not_done_batch] = next_state_values[not_done_batch].gather(1, next_best_action[not_done_batch].view((not_done_size, 1))).squeeze(1)
|
||||
|
||||
expected_values = (reward_batch + (self.config['discount_rate'] * best_next_state_value)).unsqueeze(1)
|
||||
|
||||
if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
importance_weights = torch.as_tensor(importance_weights, device = self.value_net.device)
|
||||
value_loss = (importance_weights * ((obtained_values - expected_values)**2).squeeze(1)).mean()
|
||||
else:
|
||||
value_loss = F.mse_loss(obtained_values, expected_values)
|
||||
|
||||
if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
td_error = (obtained_values - expected_values).detach().abs()
|
||||
self.memory.update_priorities(batch_indexes, td_error)
|
||||
|
||||
self.value_net.zero_grad()
|
||||
value_loss.backward()
|
||||
self.value_net.step()
|
||||
|
||||
if self.target_value_net is not None:
|
||||
if 'target_sync_tau' in self.config:
|
||||
self.target_value_net.partial_sync(self.config['target_sync_tau'])
|
||||
else:
|
||||
self.target_value_net.sync()
|
||||
|
||||
if self.logger is not None:
|
||||
self.logger.append("Loss/Value", value_loss.item())
|
||||
|
||||
|
||||
def learn_policy(self):
|
||||
starting_index = random.randint(0, len(self.memory) - self.config['batch_size'])
|
||||
state_batch, action_batch, reward_batch, next_state_batch, not_done_batch = M.zip_batch(self.memory[starting_index:(starting_index + self.config['batch_size'])])
|
||||
|
||||
state_batch = state_batch.to(self.policy_net.device)
|
||||
action_batch = action_batch.to(self.policy_net.device)
|
||||
reward_batch = reward_batch.to(self.policy_net.device)
|
||||
next_state_batch = next_state_batch.to(self.policy_net.device)
|
||||
not_done_batch = not_done_batch.to(self.policy_net.device)
|
||||
|
||||
# Find when episode ends and filter out the Transitions after
|
||||
episode_ends = (~not_done_batch).nonzero().squeeze(1)
|
||||
start_idx = 0
|
||||
end_idx = self.config['batch_size']
|
||||
if len(episode_ends) > 0:
|
||||
if (episode_ends[0] == 0).item():
|
||||
if len(episode_ends) > 1:
|
||||
start_idx = 1
|
||||
end_idx = episode_ends[1] + 1
|
||||
else:
|
||||
start_idx = 1
|
||||
else:
|
||||
end_idx = episode_ends[0] + 1
|
||||
batch_size = end_idx - start_idx
|
||||
|
||||
# Now filter...
|
||||
state_batch = state_batch[start_idx:end_idx]
|
||||
action_batch = action_batch[start_idx:end_idx]
|
||||
reward_batch = reward_batch[start_idx:end_idx]
|
||||
next_state_batch = next_state_batch[start_idx:end_idx]
|
||||
not_done_batch = not_done_batch[start_idx:end_idx]
|
||||
|
||||
|
||||
with torch.no_grad():
|
||||
if self.target_value_net is not None:
|
||||
state_values = self.target_value_net(state_batch)
|
||||
next_state_values = torch.zeros_like(state_values, device = self.value_net.device)
|
||||
next_state_values[not_done_batch] = self.target_value_net(next_state_batch[not_done_batch])
|
||||
else:
|
||||
state_values = self.value_net(state_batch)
|
||||
next_state_values = torch.zeros_like(state_values, device = self.value_net.device)
|
||||
next_state_values[not_done_batch] = self.value_net(next_state_batch[not_done_batch])
|
||||
|
||||
obtained_values = state_values.gather(1, action_batch.view(batch_size, 1))
|
||||
approx_state_action_values = reward_batch.unsqueeze(1) + self.config['discount_rate'] * next_state_values
|
||||
advantage = (obtained_values - approx_state_action_values.mean(1).unsqueeze(1))
|
||||
# Scale and squeeze the dimension
|
||||
advantage = advantage.squeeze(1)
|
||||
# advantage = (advantage / (state_values.std() + np.finfo('float').eps)).squeeze(1)
|
||||
action_probabilities = self.policy_net(state_batch)
|
||||
distributions = list(map(Categorical, action_probabilities))
|
||||
log_probs = torch.stack(list(map(lambda distribution, action: distribution.log_prob(action), distributions, action_batch)))
|
||||
policy_loss = (-log_probs * advantage).mean()
|
||||
|
||||
self.policy_net.zero_grad()
|
||||
policy_loss.backward()
|
||||
self.policy_net.step()
|
||||
|
||||
if self.logger is not None:
|
||||
self.logger.append("Loss/Policy", policy_loss.item())
|
||||
|
||||
def learn(self):
|
||||
if len(self.memory) < self.config['batch_size']:
|
||||
return
|
||||
self.learn_value()
|
||||
self.learn_policy()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# def learn(self):
|
||||
# if len(self.memory) < self.config['batch_size']:
|
||||
# return
|
||||
|
||||
# if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
# weight_importance = self.config['prioritized_replay_weight_importance']
|
||||
# # If it's a scheduler then get the next value by calling next, otherwise just use it's value
|
||||
# beta = next(weight_importance) if isinstance(weight_importance, collections.Iterable) else weight_importance
|
||||
# minibatch = self.memory.sample(self.config['batch_size'], beta = beta)
|
||||
# state_batch, action_batch, reward_batch, next_state_batch, not_done_batch, importance_weights, batch_indexes = M.zip_batch(minibatch, priority = True)
|
||||
# else:
|
||||
# minibatch = self.memory.sample(self.config['batch_size'])
|
||||
# state_batch, action_batch, reward_batch, next_state_batch, not_done_batch = M.zip_batch(minibatch)
|
||||
|
||||
# # Send to their appropriate devices
|
||||
# # [TODO] Notice how we're sending it to the value_net's device, what if policy_net was on a different device?
|
||||
# state_batch = state_batch.to(self.value_net.device)
|
||||
# action_batch = action_batch.to(self.value_net.device)
|
||||
# reward_batch = reward_batch.to(self.value_net.device)
|
||||
# next_state_batch = next_state_batch.to(self.value_net.device)
|
||||
# not_done_batch = not_done_batch.to(self.value_net.device)
|
||||
|
||||
|
||||
# ## Value Loss
|
||||
|
||||
# obtained_values = self.value_net(state_batch).gather(1, action_batch.view(self.config['batch_size'], 1))
|
||||
|
||||
# with torch.no_grad():
|
||||
# # Use the target net to produce action values for the next state
|
||||
# # and the regular net to select the action
|
||||
# # That way we decouple the value and action selecting processes (DOUBLE DQN)
|
||||
# not_done_size = not_done_batch.sum()
|
||||
# if self.target_value_net is not None:
|
||||
# next_state_values = self.target_value_net(next_state_batch)
|
||||
# next_best_action = self.value_net(next_state_batch).argmax(1)
|
||||
# else:
|
||||
# next_state_values = self.value_net(next_state_batch)
|
||||
# next_best_action = next_state_values.argmax(1)
|
||||
|
||||
# best_next_state_value = torch.zeros(self.config['batch_size'], device = self.value_net.device)
|
||||
# best_next_state_value[not_done_batch] = next_state_values.gather(1, next_best_action.view((not_done_size, 1))).squeeze(1)
|
||||
|
||||
# expected_values = (reward_batch + (self.config['discount_rate'] * best_next_state_value)).unsqueeze(1)
|
||||
|
||||
# if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
# importance_weights = torch.as_tensor(importance_weights, device = self.value_net.device)
|
||||
# value_loss = (importance_weights * ((obtained_values - expected_values)**2).squeeze(1)).mean()
|
||||
# else:
|
||||
# value_loss = F.mse_loss(obtained_values, expected_values)
|
||||
|
||||
# self.value_net.zero_grad()
|
||||
# value_loss.backward()
|
||||
# self.value_net.step()
|
||||
|
||||
# if self.target_value_net is not None:
|
||||
# if 'target_sync_tau' in self.config:
|
||||
# self.target_value_net.partial_sync(self.config['target_sync_tau'])
|
||||
# else:
|
||||
# self.target_value_net.sync()
|
||||
|
||||
# if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
# td_error = (obtained_values - expected_values).detach().abs()
|
||||
# self.memory.update_priorities(batch_indexes, td_error)
|
||||
|
||||
# if self.logger is not None:
|
||||
# self.logger.append("ValueLoss", value_loss.item())
|
||||
|
||||
# ## Policy Loss
|
||||
# with torch.no_grad():
|
||||
# state_values = self.value_net(state_batch)
|
||||
# if self.target_value_net is not None:
|
||||
# next_state_values = self.target_value_net(next_state_batch)
|
||||
# else:
|
||||
# next_state_values = self.value_net(next_state_batch)
|
||||
|
||||
# state_action_values = state_values.gather(1, action_batch.view(self.config['batch_size'], 1))
|
||||
# average_next_state_values = torch.zeros(self.config['batch_size'], device = self.value_net.device)
|
||||
# average_next_state_values[not_done_batch] = next_state_values.mean(1)
|
||||
|
||||
# advantage = (state_action_values - (reward_batch + self.config['discount_rate'] * average_next_state_values).unsqueeze(1))
|
||||
# # Scale and squeeze the dimension
|
||||
# advantage = advantage.squeeze(1)
|
||||
# # advantage = (advantage / (state_values.std() + np.finfo('float').eps)).squeeze(1)
|
||||
# action_probabilities = self.policy_net(state_batch)
|
||||
# distributions = list(map(Categorical, action_probabilities))
|
||||
# log_probs = torch.stack(list(map(lambda distribution, action: distribution.log_prob(action), distributions, action_batch)))
|
||||
# if (isinstance(self.memory, M.PrioritizedReplayMemory)):
|
||||
# policy_loss = (importance_weights * -log_probs * advantage).sum()
|
||||
# else:
|
||||
# policy_loss = (-log_probs * advantage).sum()
|
||||
|
||||
# self.policy_net.zero_grad()
|
||||
# policy_loss.backward()
|
||||
# self.policy_net.step()
|
||||
|
||||
# if self.logger is not None:
|
||||
# self.logger.append("PolicyLoss", policy_loss.item())
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,2 +1,4 @@
|
|||
from .A2CSingleAgent import *
|
||||
from .DQNAgent import *
|
||||
from .PPOAgent import *
|
||||
from .REINFORCEAgent import *
|
|
@ -67,7 +67,7 @@ def zip_batch(minibatch, priority = False):
|
|||
action_batch = torch.tensor(action_batch)
|
||||
reward_batch = torch.tensor(reward_batch)
|
||||
not_done_batch = ~torch.tensor(done_batch)
|
||||
next_state_batch = torch.cat(next_state_batch)[not_done_batch]
|
||||
next_state_batch = torch.cat(next_state_batch)
|
||||
|
||||
if priority:
|
||||
return state_batch, action_batch, reward_batch, next_state_batch, not_done_batch, weights, indexes
|
||||
|
|
Loading…
Reference in a new issue