Added improvements to the REINFORCE algorithm
This commit is contained in:
parent
a59f84b446
commit
11d99df977
3 changed files with 302 additions and 14 deletions
134
examples/acrobot_single_process_dqn.py
Normal file
134
examples/acrobot_single_process_dqn.py
Normal file
|
@ -0,0 +1,134 @@
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import rltorch
|
||||||
|
import rltorch.network as rn
|
||||||
|
import rltorch.memory as M
|
||||||
|
import rltorch.env as E
|
||||||
|
from rltorch.action_selector import ArgMaxSelector
|
||||||
|
from tensorboardX import SummaryWriter
|
||||||
|
|
||||||
|
#
|
||||||
|
## Networks
|
||||||
|
#
|
||||||
|
class Value(nn.Module):
|
||||||
|
def __init__(self, state_size, action_size):
|
||||||
|
super(Value, self).__init__()
|
||||||
|
self.state_size = state_size
|
||||||
|
self.action_size = action_size
|
||||||
|
|
||||||
|
self.fc1 = rn.NoisyLinear(state_size, 255)
|
||||||
|
self.fc_norm = nn.LayerNorm(255)
|
||||||
|
|
||||||
|
self.value_fc = rn.NoisyLinear(255, 255)
|
||||||
|
self.value_fc_norm = nn.LayerNorm(255)
|
||||||
|
self.value = rn.NoisyLinear(255, 1)
|
||||||
|
|
||||||
|
self.advantage_fc = rn.NoisyLinear(255, 255)
|
||||||
|
self.advantage_fc_norm = nn.LayerNorm(255)
|
||||||
|
self.advantage = rn.NoisyLinear(255, action_size)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = F.relu(self.fc_norm(self.fc1(x)))
|
||||||
|
|
||||||
|
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
|
||||||
|
state_value = self.value(state_value)
|
||||||
|
|
||||||
|
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
|
||||||
|
advantage = self.advantage(advantage)
|
||||||
|
|
||||||
|
x = state_value + advantage - advantage.mean()
|
||||||
|
return x
|
||||||
|
|
||||||
|
#
|
||||||
|
## Configuration
|
||||||
|
#
|
||||||
|
config = {}
|
||||||
|
config['seed'] = 901
|
||||||
|
config['environment_name'] = 'Acrobot-v1'
|
||||||
|
config['memory_size'] = 2000
|
||||||
|
config['total_training_episodes'] = 50
|
||||||
|
config['total_evaluation_episodes'] = 5
|
||||||
|
config['batch_size'] = 32
|
||||||
|
config['learning_rate'] = 1e-3
|
||||||
|
config['target_sync_tau'] = 1e-1
|
||||||
|
config['discount_rate'] = 0.99
|
||||||
|
config['replay_skip'] = 0
|
||||||
|
# How many episodes between printing out the episode stats
|
||||||
|
config['print_stat_n_eps'] = 1
|
||||||
|
config['disable_cuda'] = False
|
||||||
|
# Prioritized vs Random Sampling
|
||||||
|
# 0 - Random sampling
|
||||||
|
# 1 - Only the highest prioirities
|
||||||
|
config['prioritized_replay_sampling_priority'] = 0.6
|
||||||
|
# How important are the weights for the loss?
|
||||||
|
# 0 - Treat all losses equally
|
||||||
|
# 1 - Lower the importance of high losses
|
||||||
|
# Should ideally start from 0 and move your way to 1 to prevent overfitting
|
||||||
|
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
|
||||||
|
|
||||||
|
#
|
||||||
|
## Training Loop
|
||||||
|
#
|
||||||
|
def train(runner, agent, config, logger = None, logwriter = None):
|
||||||
|
finished = False
|
||||||
|
last_episode_num = 1
|
||||||
|
while not finished:
|
||||||
|
runner.run(config['replay_skip'] + 1)
|
||||||
|
agent.learn()
|
||||||
|
if logwriter is not None:
|
||||||
|
if last_episode_num < runner.episode_num:
|
||||||
|
last_episode_num = runner.episode_num
|
||||||
|
agent.net.log_named_parameters()
|
||||||
|
logwriter.write(logger)
|
||||||
|
finished = runner.episode_num > config['total_training_episodes']
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Setting up the environment
|
||||||
|
rltorch.set_seed(config['seed'])
|
||||||
|
print("Setting up environment...", end = " ")
|
||||||
|
env = E.TorchWrap(gym.make(config['environment_name']))
|
||||||
|
env.seed(config['seed'])
|
||||||
|
print("Done.")
|
||||||
|
|
||||||
|
state_size = env.observation_space.shape[0]
|
||||||
|
action_size = env.action_space.n
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
logger = rltorch.log.Logger()
|
||||||
|
logwriter = rltorch.log.LogWriter(SummaryWriter())
|
||||||
|
|
||||||
|
# Setting up the networks
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
|
||||||
|
net = rn.Network(Value(state_size, action_size),
|
||||||
|
torch.optim.Adam, config, device = device, name = "DQN", logger = logger)
|
||||||
|
target_net = rn.TargetNetwork(net, device = device)
|
||||||
|
|
||||||
|
# Actor takes a net and uses it to produce actions from given states
|
||||||
|
actor = ArgMaxSelector(net, action_size, device = device)
|
||||||
|
# Memory stores experiences for later training
|
||||||
|
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
|
||||||
|
|
||||||
|
# Runner performs a certain number of steps in the environment
|
||||||
|
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
|
||||||
|
|
||||||
|
# Agent is what performs the training
|
||||||
|
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
|
||||||
|
|
||||||
|
print("Training...")
|
||||||
|
train(runner, agent, config, logger = logger, logwriter = logwriter)
|
||||||
|
|
||||||
|
# For profiling...
|
||||||
|
# import cProfile
|
||||||
|
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
|
||||||
|
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
|
||||||
|
|
||||||
|
print("Training Finished.")
|
||||||
|
|
||||||
|
print("Evaluating...")
|
||||||
|
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
|
||||||
|
print("Evaulations Done.")
|
||||||
|
|
||||||
|
logwriter.close() # We don't need to write anything out to disk anymore
|
147
examples/pong_mp_dqn.py
Normal file
147
examples/pong_mp_dqn.py
Normal file
|
@ -0,0 +1,147 @@
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import rltorch
|
||||||
|
import rltorch.network as rn
|
||||||
|
import rltorch.memory as M
|
||||||
|
import rltorch.env as E
|
||||||
|
from rltorch.action_selector import ArgMaxSelector
|
||||||
|
from tensorboardX import SummaryWriter
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
|
||||||
|
#
|
||||||
|
## Networks
|
||||||
|
#
|
||||||
|
class Value(nn.Module):
|
||||||
|
def __init__(self, state_size, action_size):
|
||||||
|
super(Value, self).__init__()
|
||||||
|
self.state_size = state_size
|
||||||
|
self.action_size = action_size
|
||||||
|
|
||||||
|
self.conv1 = nn.Conv2d(4, 32, kernel_size = (8, 8), stride = (4, 4))
|
||||||
|
self.conv_norm1 = nn.LayerNorm([32, 19, 19])
|
||||||
|
self.conv2 = nn.Conv2d(32, 64, kernel_size = (4, 4), stride = (2, 2))
|
||||||
|
self.conv_norm2 = nn.LayerNorm([64, 8, 8])
|
||||||
|
self.conv3 = nn.Conv2d(64, 64, kernel_size = (3, 3), stride = (1, 1))
|
||||||
|
self.conv_norm3 = nn.LayerNorm([64, 6, 6])
|
||||||
|
|
||||||
|
self.fc1 = rn.NoisyLinear(64 * 6 * 6, 384)
|
||||||
|
self.fc_norm = nn.LayerNorm(384)
|
||||||
|
|
||||||
|
self.value_fc = rn.NoisyLinear(384, 384)
|
||||||
|
self.value_fc_norm = nn.LayerNorm(384)
|
||||||
|
self.value = rn.NoisyLinear(384, 1)
|
||||||
|
|
||||||
|
self.advantage_fc = rn.NoisyLinear(384, 384)
|
||||||
|
self.advantage_fc_norm = nn.LayerNorm(384)
|
||||||
|
self.advantage = rn.NoisyLinear(384, action_size)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = F.relu(self.conv_norm1(self.conv1(x)))
|
||||||
|
x = F.relu(self.conv_norm2(self.conv2(x)))
|
||||||
|
x = F.relu(self.conv_norm3(self.conv3(x)))
|
||||||
|
|
||||||
|
# Makes batch_size dimension again
|
||||||
|
x = x.view(-1, 64 * 6 * 6)
|
||||||
|
x = F.relu(self.fc_norm(self.fc1(x)))
|
||||||
|
|
||||||
|
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
|
||||||
|
state_value = self.value(state_value)
|
||||||
|
|
||||||
|
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
|
||||||
|
advantage = self.advantage(advantage)
|
||||||
|
|
||||||
|
x = state_value + advantage - advantage.mean()
|
||||||
|
|
||||||
|
# For debugging purposes...
|
||||||
|
if torch.isnan(x).any().item():
|
||||||
|
print("WARNING NAN IN MODEL DETECTED")
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
#
|
||||||
|
## Configuration
|
||||||
|
#
|
||||||
|
config = {}
|
||||||
|
config['seed'] = 901
|
||||||
|
config['environment_name'] = 'PongNoFrameskip-v4'
|
||||||
|
config['memory_size'] = 5000
|
||||||
|
config['total_training_episodes'] = 500
|
||||||
|
config['total_evaluation_episodes'] = 10
|
||||||
|
config['learning_rate'] = 1e-4
|
||||||
|
config['target_sync_tau'] = 1e-3
|
||||||
|
config['discount_rate'] = 0.99
|
||||||
|
config['exploration_rate'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.1, end_value = 0.01, iterations = 5000)
|
||||||
|
config['replay_skip'] = 4
|
||||||
|
config['batch_size'] = 32 * (config['replay_skip'] + 1)
|
||||||
|
# How many episodes between printing out the episode stats
|
||||||
|
config['print_stat_n_eps'] = 1
|
||||||
|
config['disable_cuda'] = False
|
||||||
|
# Prioritized vs Random Sampling
|
||||||
|
# 0 - Random sampling
|
||||||
|
# 1 - Only the highest prioirities
|
||||||
|
config['prioritized_replay_sampling_priority'] = 0.6
|
||||||
|
# How important are the weights for the loss?
|
||||||
|
# 0 - Treat all losses equally
|
||||||
|
# 1 - Lower the importance of high losses
|
||||||
|
# Should ideally start from 0 and move your way to 1 to prevent overfitting
|
||||||
|
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# To not hit file descriptor memory limit
|
||||||
|
torch.multiprocessing.set_sharing_strategy('file_system')
|
||||||
|
|
||||||
|
# Setting up the environment
|
||||||
|
rltorch.set_seed(config['seed'])
|
||||||
|
print("Setting up environment...", end = " ")
|
||||||
|
env = E.FrameStack(E.TorchWrap(
|
||||||
|
E.ProcessFrame(E.FireResetEnv(gym.make(config['environment_name'])),
|
||||||
|
resize_shape = (80, 80), crop_bounds = [34, 194, 15, 145], grayscale = True))
|
||||||
|
, 4)
|
||||||
|
env.seed(config['seed'])
|
||||||
|
print("Done.")
|
||||||
|
|
||||||
|
state_size = env.observation_space.shape[0]
|
||||||
|
action_size = env.action_space.n
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
logger = rltorch.log.Logger()
|
||||||
|
logwriter = rltorch.log.LogWriter(SummaryWriter())
|
||||||
|
|
||||||
|
# Setting up the networks
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
|
||||||
|
net = rn.Network(Value(state_size, action_size),
|
||||||
|
torch.optim.Adam, config, device = device, name = "DQN")
|
||||||
|
target_net = rn.TargetNetwork(net, device = device)
|
||||||
|
net.model.share_memory()
|
||||||
|
target_net.model.share_memory()
|
||||||
|
|
||||||
|
# Actor takes a net and uses it to produce actions from given states
|
||||||
|
actor = ArgMaxSelector(net, action_size, device = device)
|
||||||
|
# Memory stores experiences for later training
|
||||||
|
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
|
||||||
|
|
||||||
|
# Runner performs a certain number of steps in the environment
|
||||||
|
runner = rltorch.mp.EnvironmentRun(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
|
||||||
|
|
||||||
|
# Agent is what performs the training
|
||||||
|
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
|
||||||
|
|
||||||
|
print("Training...")
|
||||||
|
train(runner, agent, config, logger = logger, logwriter = logwriter)
|
||||||
|
|
||||||
|
# For profiling...
|
||||||
|
# import cProfile
|
||||||
|
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
|
||||||
|
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
|
||||||
|
|
||||||
|
print("Training Finished.")
|
||||||
|
runner.terminate() # We don't need the extra process anymore
|
||||||
|
|
||||||
|
print("Evaluating...")
|
||||||
|
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
|
||||||
|
print("Evaulations Done.")
|
||||||
|
|
||||||
|
logwriter.close() # We don't need to write anything out to disk anymore
|
|
@ -13,26 +13,33 @@ class REINFORCEAgent:
|
||||||
self.target_net = target_net
|
self.target_net = target_net
|
||||||
self.logger = logger
|
self.logger = logger
|
||||||
|
|
||||||
def _discount_rewards(self, rewards):
|
# Shaped rewards implements three improvements to REINFORCE
|
||||||
discounted_rewards = torch.zeros_like(rewards)
|
# 1) Discounted rewards, future rewards matter less than current
|
||||||
running_add = 0
|
# 2) Baselines: We use the mean reward to see if the current reward is advantageous or not
|
||||||
for t in reversed(range(len(rewards))):
|
# 3) Causality: Your current actions do not affect your past. Only the present and future.
|
||||||
running_add = running_add * self.config['discount_rate'] + rewards[t]
|
def _shape_rewards(self, rewards):
|
||||||
discounted_rewards[t] = running_add
|
shaped_rewards = torch.zeros_like(rewards)
|
||||||
|
baseline = rewards.mean()
|
||||||
# Normalize rewards
|
for i in range(len(rewards)):
|
||||||
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + np.finfo('float').eps)
|
gammas = torch.cumprod(torch.tensor(self.config['discount_rate']).repeat(len(rewards) - i), dim = 0)
|
||||||
return discounted_rewards
|
advantages = rewards[i:] - baseline
|
||||||
|
shaped_rewards[i] = (gammas * advantages).sum()
|
||||||
|
return shaped_rewards
|
||||||
|
|
||||||
def learn(self):
|
def learn(self):
|
||||||
episode_batch = self.memory.recall()
|
episode_batch = self.memory.recall()
|
||||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
||||||
|
|
||||||
discount_reward_batch = self._discount_rewards(torch.tensor(reward_batch))
|
# Caluclate discounted rewards to place more importance to recent rewards
|
||||||
|
shaped_reward_batch = self._shape_rewards(torch.tensor(reward_batch))
|
||||||
|
|
||||||
|
# Scale discounted rewards to have variance 1 (stabalizes training)
|
||||||
|
shaped_reward_batch = shaped_reward_batch / (shaped_reward_batch.std() + np.finfo('float').eps)
|
||||||
|
|
||||||
log_prob_batch = torch.cat(log_prob_batch)
|
log_prob_batch = torch.cat(log_prob_batch)
|
||||||
|
|
||||||
policy_loss = (-log_prob_batch * discount_reward_batch).sum()
|
policy_loss = (-log_prob_batch * shaped_reward_batch).sum()
|
||||||
|
|
||||||
if self.logger is not None:
|
if self.logger is not None:
|
||||||
self.logger.append("Loss", policy_loss.item())
|
self.logger.append("Loss", policy_loss.item())
|
||||||
|
|
||||||
|
@ -47,5 +54,5 @@ class REINFORCEAgent:
|
||||||
else:
|
else:
|
||||||
self.target_net.sync()
|
self.target_net.sync()
|
||||||
|
|
||||||
# Memory is irrelevant for future training
|
# Memory under the old policy is not needed for future training
|
||||||
self.memory.clear()
|
self.memory.clear()
|
||||||
|
|
Loading…
Reference in a new issue